
Micromega Corporation Revised 2014-09-08

uM-FPU64
64-bit Floating Point Coprocessor

Instruction Set
Release 411

Introduction
The uM-FPU64 floating point coprocessor provides extensive support for 32-bit IEEE 754 compatible floating point
and integer operations, 64-bit IEEE 754 compatible floating point and integer operations, and local peripheral device
support.

A typical calculation involves sending instructions and data from the microcontroller to the uM-FPU, performing the
calculation, and transferring the result back to the microcontroller.

Microcontroller uM-FPU64

Read results

Perform calculations

Send data and
instructions

Instructions and data are sent to the uM-FPU using either a SPI or I2C interface. The uM-FPU64 chip has a 256 byte
instruction buffer which allows for multiple instructions to sent. This improves the transfer times and allows the
microcontroller to perform other tasks while the uM-FPU is performing a series of calculations. Prior to issuing any
instruction that reads data from the uM-FPU, the Busy/Ready status must be checked to ensure that all instructions
have been executed. If more than 256 bytes are required to specify a sequence of operations, the Busy/Ready status
must be checked at least every 256 bytes to ensure that the instruction buffer does not overflow. See the datasheet for
more detail regarding the SPI or I2C interfaces.

Instructions consist of an single opcode byte, optionally followed by addition data bytes. A detailed description of
each instruction is provided later in this document, and a summary table is provided in Appendix A.

 For instruction timing, see Appendix B of the uM-FPU64 Datasheet.

Overview

Micromega Corporation 2 uM-FPU64 Instruction Set - Release 411

uM-FPU Registers
The uM-FPU64 has 256 general purpose registers, and 16 temporary registers. They can be used for storing floating
point or integer values. The general purpose registers are numbered 0 to 255, and can be directly accessed by the
instruction set. Registers 0 to 127 are 32-bit registers, and registers 128 to 255 are 64-bit registers. The 16 temporary
registers are used by the LEFT and RIGHT instructions to store temporary results. They can be accessed through
register A, but can’t be accessed directly by the instruction set.

Temporary Registers

32-bit Registers
•
•
•
•
•
•
•

Register A

Register X

0
1
2
3

127

32-bit Register
•
•

T1

T8

General Registers

64-bit Register
•
•

T9

T16

64-bit Registers
•
•
•
•
•
•
•

128
129
130
131

255

Register A
All mathematical operations on the uM-FPU64 use a working register called register A. The value in register A is
used as an operand for the mathematical operation, and the results of the operation are stored back to register A. Any
general purpose registers can be selected as register A, using the SELECTA instruction. For example,

SELECTA,5 register 5 is selected as register A

Register A also determines whether an operation is a 32-bit operation or a 64-bit operation. If register A is selected
as register 0 to 127, the operation is 32-bit. If register A is selected as 128 to 255, the operation is 64-bit.

Arithmetic instructions that only involve one register implicitly refer to register A. For example,
FNEG negate the value in register A

Overview

Micromega Corporation 3 uM-FPU64 Instruction Set - Release 411

Arithmetic instructions that use two registers will specify the second register as part of the instruction. For example,
FADD,4 add the value of register 4 to register A

Register X
Register X is used to reference a series of sequential registers. The register X selection is automatically incremented
to the next register in sequence by all instructions that use register X. Any register can be selected as register X
using the SELECTX instruction. For example,

SELECTX,16 select register 16 as register X
CLRX clear register 16 (and increment register X)
CLRX clear register 17 (and increment register X)
CLRX clear register 18 (and increment register X)

Another example would be to use the FWRITEX and READX instructions to store and retrieve blocks of data.

Register 0 and Register 128
Register 0 and register 128 are implicitly used by many instructions. Register 0 is used for 32-bit operations, and
register 128 is used for 64-bit operations. They are used by many instructions to pass values or to return values.

Register 0 and register 128 can be used as general purpose registers, but since many instructions use these registers,
they are normally only used to store temporary values. For example,

LOADPI load the value of pi to register 0 or 128
FSET0 store the value to register A

Register Abbreviations
In this document the following abbreviations are used to refer to registers:

reg[0] register 0 (32-bit)
reg[128] register 128 (64-bit)
reg[0 | 128] register 0 (32-bit) or register 128 (64-bit)
reg[A] register A
reg[X] register X
reg[register] any general purpose registers
reg[register1] any general purpose registers
reg[register2] any general purpose registers

Overview

Micromega Corporation 4 uM-FPU64 Instruction Set - Release 411

Floating Point Instructions
The following descriptions provide a quick summary of the floating point instructions. Detailed descriptions are
provided in the next section.

Basic Floating Point Instructions
Each of the basic floating point arithmetic instructions are provided in three different forms as shown in the table
below. The FADD instruction is used as an example to describe the three different forms of these instructions. The
FADD,register instruction allows any general purpose register to be added to register A. The register to be
added to register A is specified by the byte following the opcode. The FADD0 instruction adds register 0 to register A
and only requires the opcode. The FADDI instruction adds a small integer value the register A. The signed byte
(-128 to 127) following the opcode is converted to floating point and added to register A. The FADD,register
instruction is most general, but the FADD0 and FADDI,signedByte instructions are more efficient for many
common operations.

Loading Floating Point Values
The following instructions are used to load data from the microprocessor and store it on the uM-FPU64 as 32-bit
floating point values. Register A determines whether 32-bit or 64-bit values are stored.

FWRITE,register,float32Value Write 32-bit floating point value to register
FWRITE0,float32Value Write 32-bit floating point value to reg[0] or reg[128]
FWRITEA,float32Value Write 32-bit floating point value to reg[A]
FWRITEX,float32Value Write 32-bit floating point value to reg[X]
DWRITE,register,float64Value Write 64-bit floating point value to register
ATOF,string Convert ASCII string to floating point value and

store in reg[0] or reg[128]
LOADBYTE,signedByte Convert signed byte to floating point and

store in reg[0] or reg[128]
LOADUBYTE,unsignedByte Convert unsigned byte to floating point and

store in reg[0] or reg[128]
LOADWORD,signedWord Convert signed 16-bit value to floating point and

store in reg[0] or reg[128]
LOADUWORD,unsignedWord Convert unsigned 16-bit value to floating point and

store in reg[0] or reg[128]
LOADE Load the value of e (2.7182818) to reg[0] or reg[128]
LOADPI Load the value of pi (3.1415927) to reg[0] or reg[128]
FCOPYI,unsignedByte,register Convert signed 8-bit value to floating point and

store in register

Register
FSET,register
FADD,register
FSUB,register
FSUBR,register
FMUL,register
FDIV,register
FDIVR,register
FPOW,register
FCMP,register

Register 0
FSET0
FADD0
FSUB0
FSUBR0
FMUL0
FDIV0
FDIVR0
FPOW0
FCMP0

Immediate value
FSETI,signedByte
FADDI,signedByte
FSUBI,signedByte
FSUBRI,signedByte
FMULI,signedByte
FDIVI,signedByte
FDIVRI,signedByte
FPOWI,signedByte
FCMPI,signedByte

Description
Set
Add
Subtract
Subtract Reverse
Multiply
Divide
Divide Reverse
Power
Compare

Overview

Micromega Corporation 5 uM-FPU64 Instruction Set - Release 411

Reading Floating Point Values
The following instructions are used to read floating point values from the uM-FPU.

FREAD, register [float32Value] Return 32-bit floating point value from register
FREAD0 [float32Value] Return 32-bit floating point value from reg[0] or reg[128]
FREADA [float32Value] Return 32-bit floating point value from reg[A]
FREADX [float32Value] Return 32-bit floating point value from reg[X]
DREAD, register [float64Value] Return 64-bit floating point value from register
FTOA,format Convert floating point to ASCII string

(READSTR used to read string)

Additional Floating Point Instructions

Matrix Instructions
SELECTMA,register,rows,columns

Select matrix A starting at register of size rows x columns
SELECTMB,register,rows,columns

Select matrix B starting at register of size rows x columns
SELECTMC,register,rows,columns

Select matrix C starting at register of size rows x columns
LOADMA,row,column Load reg[0] with value from matrix A row,column
LOADMB,row,column Load reg[0] with value from matrix B row,column
LOADMC,row,column Load reg[0] with value from matrix C row,column
SAVEMA,row,column Store reg[A] value to matrix A row,column
SAVEMB,row,column Store reg[A] value to matrix A row,column
SAVEMC,row,column Store reg[A] value to matrix A row,column
MOP,action Perform matrix operation

Fast Fourier Transform Instruction
FFT,action Perform Fast Fourier Transform operation

Conversion Instructions
FLOAT Convert reg[A] from long integer to floating point
FIX Convert reg[A] from floating point to long integer
FIXR Convert reg[A] from floating point to long integer (with rounding)
FSPLIT Set reg[A] = integer value, reg[0] or reg[128] = fractional value

FNEG
FABS
FINV
SQRT
ROOT,register
LOG
LOG10
EXP
EXP10

SIN
COS
TAN
ASIN
ACOS
ATAN
ATAN2,register
DEGREES
RADIANS

FSTATUS,register
FSTATUSA
FCMP2,register1,register2
FMAC,register1,register2
FMSC,register1,register2
FCNV,conversion
FMIN,register
FMAX,register
FMOD

FLOOR
CEIL
ROUND
FRAC

Overview

Micromega Corporation 6 uM-FPU64 Instruction Set - Release 411

Long Integer Instructions
The following descriptions provide a quick summary of the long integer instructions. Detailed descriptions are
provided in the next section.

Basic Long Integer Instructions
Each of the basic long integer arithmetic instructions are provided in three different forms as shown in the table
below. The LADD instruction will be used as an example to describe the three different forms of the instructions. The
LADD,register instruction allows any general purpose register to be added to register A. The register to be
added to register A is specified by the byte following the opcode. The LADD0 instruction adds register 0 to register A
and only requires the opcode. The LADDI instruction adds a small integer value the register A. The signed byte
(-128 to 127) following the opcode is converted to a long integer and added to register A. The LADD,register
instruction is most general, but the LADD0 and LADDI,signedByte instructions are more efficient for many
common operations.

Loading Long Integer Values
The following instructions are used to load data from the microprocessor and store it on the uM-FPU as 32-bit long
integer values.

LWRITE,register,int32Value Write 32-bit long integer value to register
LWRITE0,int32Value Write 32-bit long integer value to reg[0] or reg[128]
LWRITEA,int32Value Write 32-bit long integer value to reg[A]
LWRITEX,int32Value Write 32-bit long integer value to reg[X]
DWRITE,register,intValue Write 64-bit floating point value to register
ATOL,string Convert ASCII string to long integer value and

store in reg[0] or reg[128]
LONGBYTE,signedByte Convert signed byte to long integer and

store in reg[0] or reg[128]
LONGUBYTE,unsignedByte Convert unsigned byte to long integer and

store in reg[0] or reg[128]
LONGWORD,signedWord Convert signed 16-bit value to long integer

and store in reg[0] or reg[128]
LONGUWORD,unsignedByte Convert unsigned 16-bit value to long integer and

store in reg[0] or reg[128]
LCOPYI,unsignedByte,register Convert signed 8-bit value to long integer and

store in register

Register
LSET,register
LADD,register
LSUB,register
LMUL,register
LDIV,register
LCMP,register
LUDIV,register
LUCMP,register
LTST,register

Register 0
LSET0
LADD0
LSUB0
LMUL0
LDIV0
LCMP0
LUDIV0
LUCMP0
LTST0

Immediate value
LSETI,signedByte
LADDI,signedByte
LSUBI,signedByte
LMULI,signedByte
LDIVI,signedByte
LCMPI,signedByte
LUDIVI,unsignedByte
LUCMPI,unsignedByte
LTSTI,unsignedByte

Description
Set
Add
Subtract
Multiply
Divide
Compare
Unsigned Divide
Unsigned Compare
Test Bits

Overview

Micromega Corporation 7 uM-FPU64 Instruction Set - Release 411

Reading Long Integer Values
The following instructions are used to read long integer values from the uM-FPU.

LREAD, register [int32Value] Returns 32-bit long integer value from register
LREAD0 [int32Value] Returns 32-bit long integer value from reg[0] or reg[128]
LREADA [int32Value] Returns 32-bit long integer value from reg[A]
LREADX [int32Value] Returns 32-bit long integer value from reg[X]
DREAD, register [int64Value] Return 64-bit floating point value from register
LREADBYTE [byteValue] Returns 8-bit byte from reg[A]
LREADWORD [wordValue] Returns 16-bit value from reg[A]
LTOA,format Convert long integer to ASCII string (use READSTR to

read string)

Additional Long Integer Instructions
LSTATUS,register
LSTATUSA

LNEG
LABS
LNOT
LINC,register
LDEC,register

LCMP2,register1,register2
LUCMP2,register1,register2

LMIN,register
LMAX,register
LSHIFT,register
LSHIFTI,signedByte
LBIT,unsignedByte,register

LAND,register
LANDI,unsignedByt
e
LOR,register
LORI,unsignedByte
LXOR,register

Overview

Micromega Corporation 8 uM-FPU64 Instruction Set - Release 411

General Purpose Instructions

Special Purpose Instructions

Indirect Pointer Instructions
SETIND,type,{register | address} Set indirect pointer
ADDIND,register,unsignedByte Add to indirect pointer
COPYIND,fromPtr,toPtr,countReg Copy using indirect pointers
LOADIND,register Load reg[0 | 128] using indirect pointer
SAVEIND,register Save reg[A] using indirect pointer
RDIND,type,count [dataValue1…dataValueN]

Read multiple data values from indirect pointer
WRIND,type,count,dataValue1…dataValueN

Write multiple data values to indirect pointer

Stored Function Instructions
FCALL,function Call user-defined function stored in Flash
RET Return from user-defined function
RET,conditionCode Conditional return from user-defined function
BRA,relativeOffset Unconditional branch inside user-defined function
BRA,conditionCode,relativeOffset Conditional branch inside user-defined function
JMP,absoluteOffset Unconditional jump inside user-defined function
JMP,conditionCode,absoluteOffset Conditional jump inside user-defined function
GOTO,register Computed goto
TABLE,tableSize,tableItem1...tableItemN

Table lookup
FTABLE,conditionCode,tableSize,tableItem1...tableItemN

Floating point reverse table lookup
LTABLE,conditionCode,tableSize,tableItem1...tableItemN

Long integer reverse table lookup
POLY,count,floatValue1...floatValueN

Nth order polynomial

Background Event Processing
EVENT,action{,function} Background event processing

Analog to Digital Conversion Instructions
ADCMODE,mode Select A/D trigger mode
ADCTRIG Manual A/D trigger
ADCSCALE,channel Set A/D floating point scale factor
ADCLONG,channel Get raw long integer A/D reading
ADCLOAD,channel Get scaled floating point A/D reading

SELECTA,register
SELECTX,register
CLR,register
CLRA
CLRX
CLR0
LOAD,register
LOADA
LOADX

ALOADX
COPY,register1,register2
COPY0,register
COPYA,register
COPYX,register
SWAP,register1,register2
SWAPA,register
SETSTATUS,unsignedbyte
READSTATUS

XSAVE,register
XSAVEA
INDA
INDX
LEFT
RIGHT
READVAR,item
RESET
NOP

SETREAD
SYNC
VERSION
IEEEMODE
PICMODE
SETARGS
CHECKSUM
XOP

Overview

Micromega Corporation 9 uM-FPU64 Instruction Set - Release 411

ADCWAIT Wait for A/D conversion to complete

Digital I/O Instructions
DIGIO,action{,mode} Digital I/O
DEVIO,device,action{,…} Device I/O

Timer Instructions
TIMESET Set timers
TIMELONG Get time in seconds
TICKLONG Get time in milliseconds
RTC,action Real-time Clock
DELAY,period Delay (in milliseconds)

External Input Instructions
EXTSET Set external input counter
EXTLONG Get external input counter
EXTWAIT Wait for next external input pulse

String Manipulation Instructions
STRSET,string Copy string to string buffer
STRSEL,start,length Set string selection point
STRINS,string Insert string at selection point
STRBYTE Insert byte at selection point
STRINC Increment string selection point
STRDEC Decrement string selection point
STRCMP,string Compare string with string selection
STRFIND,string Find string
STRFCHR,string Set field delimiters
STRFIELD,field Find field
STRTOF Convert string selection to floating point
STRTOL Convert string selection to long integer
FTOA,format Convert floating point value to string
LTOA,format Convert long integer value to string
READSTR Read entire string buffer
READSEL Read string selection

Serial Input/Output
SEROUT,action{,…} Serial Output
SERIN,action Serial Input

Debugging Instructions
BREAK Debug breakpoint
TRACEOFF Turn debug trace off
TRACEON Turn debug trace on
TRACESTR,string Display string in debug trace
TRACEREG,register Display contents of register in debug trace

Overview

Micromega Corporation 10 uM-FPU64 Instruction Set - Release 411

Test Conditions
Several of the stored function instructions use a test condition byte. The test condition is an 8-bit byte that defines
the expected state of the internal status byte. The upper nibble is used as a mask to determine which status bits to
check. A status bit will only be checked if the corresponding mask bit is set to 1. The lower nibble specifies the
expected value for each of the corresponding status bits in the internal status byte. A test condition is considered to
be true if all of the masked test bits have the same value as the corresponding bits in the internal status byte. There
are two special cases: 0x60 evaluates as greater than or equal, and 0x62 evaluates as less than or equal.

Mask I S

7 6 5 4 3 2 1 0Bit

N Z

Bits 7:4 Mask bits
Bit 7 Mask bit for Infinity
Bit 6 Mask bit for NaN
Bit 5 Mask bit for Sign
Bit 4 Mask bit for Zero

Bits 3:0 Test bits
Bit 3 Expected state of Infinity status bit
Bit 2 Expected state of NaN status bit
Bit 1 Expected state of Sign status bit
Bit 0 Expected state of Zero status bit

The uM-FPU V3 IDE assembler has built-in symbols for the most common test conditions. They are as follows:

Assembler Symbol Test Condition Description
Z 0x51 Zero
EQ 0x51 Equal
NZ 0x50 Not Zero
NE 0x50 Not Equal
LT 0x72 Less Than
LE 0x62 Less Than or Equal
GT 0x70 Greater Than
GE 0x60 Greater Than or Equal
PZ 0x71 Positive Zero
MZ 0x73 Negative Zero
INF 0xC8 Infinity
FIN 0xC0 Finite
PINF 0xE8 Positive Infinity
MINF 0xEA Minus infinity
NAN 0x44 Not-a-Number (NaN)
TRUE 0x00 True
FALSE 0xFF False

Instruction Reference

Micromega Corporation 11 uM-FPU64 Instruction Set - Release 411

uM-FPU64 Instruction Reference

ACOS Arc Cosine

Syntax: ACOS

Description: Calculates the arc cosine of an angle in the range 0.0 through pi. The initial value is contained in
register A, and the result is stored in register A.

reg[A] = acos(reg[A])

Opcode: 4B

Special Cases: • if reg[A] is NaN or its absolute value is greater than 1, then the result is NaN

See Also: ASIN, ATAN, ATAN2, COS, SIN, TAN, DEGREES, RADIANS

ADCLOAD Load scaled analog value

Syntax: ADCLOAD,channel

Description: Loads register 0 with the scaled floating point value of the analog reading from the specified
channel.

if reg[A] is 32-bit,
reg[0] = (float(ADCvalue[channel]) * ADCscale[channel])) + ADCoffset[channel]

if reg[A] is 64-bit,
reg[128] = (float(ADCvalue[channel]) * ADCscale[channel])) + ADCoffset[channel]

Opcode: D5

Byte 2: channel

-
7 6 5 4 3 2 1 0Bit

Channel

Bits 3:0 Channel
Value Description
0 to 5 28-pin chip (AN0 to AN5)
0 to 8 44-pin chip (AN0 to AN8)

Waits until the analog-to-digital conversion is complete, then loads register 0 with the reading
from the specified analog channel. The 12-bit value is converted to floating point, multiplied by
the scale value for the selected channel, and added to the offset for the selected channel. The value
is stored in register 0.

Note: The instruction buffer should be empty when this instruction is executed. If there are other
instructions in the instruction buffer, or another instruction is sent before the ADCLOAD instruction
has been completed, the wait will terminate and the previous value for the selected channel will be

Instruction Reference

Micromega Corporation 12 uM-FPU64 Instruction Set - Release 411

used.

See Also: ADCLONG, ADCMODE, ADCSCALE, ADCTRIG, ADCWAIT

ADCLONG Load raw analog value

Syntax: ADCLONG,channel

Description: Loads register 0 with the long integer value of the raw analog reading from the specified channel,
or a pointer to the memory buffer containing the analog readings (if the PTR bit is set).

if reg[A] is 32-bit, reg[0] = ADCvalue[channel], status = longStatus(reg[0])
if reg[A] is 64-bit, reg[128] = ADCvalue[channel], status = longStatus(reg[128])

Opcode: D4

Byte 2: channel

-
7 6 5 4 3 2 1 0Bit

P ChannelS

Bit 5 Size
IDE Symbol IDE Value Description
- 0x00 Stores the analog reading in register 0.
SIZE 0x20 Stores the size of the memory buffer in

register 0. Used in block mode.
Bit 4 Pointer

IDE Symbol IDE Value Description
- 0x00 Stores the analog reading in register 0.
PTR 0x10 Stores a pointer to the memory buffer

register 0. Used in block mode.
Bits 3:0 Channel

Value Description
0 to 5 28-pin chip (AN0 to AN5)
0 to 8 44-pin chip (AN0 to AN8)

Waits until the analog-to-digital conversion is complete, then loads register 0 with the selected
value. If bit 4 is zero, the 12-bit value reading from the specified analog channel is converted to a
long integer and stored in register 0. If bit 4 is one, a pointer to the memory buffer containing the
analog reading is stored in register 0. The memory buffer stores the 12-bit analog reading in
sequential 16-bit words. The pointer option is normally used only when the ADC is configured for
block mode sampling.

Note: The instruction buffer should be empty when this instruction is executed. If there are other
instructions in the instruction buffer, or another instruction is sent before the ADCLONG instruction
has been completed, the wait will terminate and the previous value for the selected channel will be
returned.

See Also: ADCLOAD, ADCMODE, ADCSCALE, ADCTRIG, ADCWAIT

Instruction Reference

Micromega Corporation 13 uM-FPU64 Instruction Set - Release 411

ADCMODE Set ADC trigger mode

Syntax: ADCMODE,mode

Description: Set the trigger mode of the A/D converter. The mode is interpreted as follows:

Opcode: D1

Byte 2: mode

7 6 5 4 3 2 1 0Bit
Action Options

Bits 7:4 Action
IDE Symbol IDE Value Description
DISABLE 0x00 Disable analog conversions
MANUAL 0x10 Manual trigger
EXTIN 0x20 External trigger
TIMER 0x30 Timer trigger
EXTIN_BLK 0x40 External trigger, block mode
TIMER_BLK 0x50 Timer trigger, block mode
CHANNELS 0x60 Maximum number of ADC channels
VREF 0x70 Select voltage reference

Bits 3:0 Options
See descriptions below.

DISABLE
ADCMODE, DISABLE

Disable analog conversions.

0
7 6 5 4 3 2 1 0Bit

-

MANUAL
ADCMODE, MANUAL+repeat

Manual trigger, single sample with repeat.

1
7 6 5 4 3 2 1 0Bit

Repeat
Bits 3:0 Repeat Count

Value Description
0 to 15 For modes 1 to 3, the number of samples taken for each trigger

is equal to the repeat count plus one.
e.g. a value of 0 will result in one sample per trigger.

a value of 15 will result in 16 samples per trigger.

EXTIN
ADCMODE, EXTIN+repeat

External trigger, single sample with repeat.

Instruction Reference

Micromega Corporation 14 uM-FPU64 Instruction Set - Release 411

2
7 6 5 4 3 2 1 0Bit

Repeat
Bits 3:0 Repeat Count

Value Description
0 to 15 For modes 1 to 3, the number of samples taken for each trigger

is equal to the repeat count plus one.
e.g. a value of 0 will result in one sample per trigger.

a value of 15 will result in 16 samples per trigger.

TIMER
ADCMODE, TIMER+repeat

Timer trigger, single sample with repeat.

3
7 6 5 4 3 2 1 0Bit

Repeat
Bits 3:0 Repeat Count

Value Description
0 to 15 For modes 1 to 3, the number of samples taken for each

trigger is equal to the repeat count plus one.
e.g. a value of 0 will result in one sample per trigger.

a value of 15 will result in 16 samples per trigger.

The value in register 0 specifies the time interval in microseconds. The minimum time
interval is 100 microseconds and the maximum time interval is 4294.967 seconds. Short
time intervals (from 100 microseconds to 2 milliseconds) are accurate to the
microsecond, whereas longer time intervals (greater than 2 milliseconds) are accurate to
the millisecond.

EXTIN_BLK
ADCMODE, EXTIN_BLK

External trigger, block mode with continuous sampling.

4
7 6 5 4 3 2 1 0Bit

-

TIMER_BLK
ADCMODE, TIMER_BLK

Timer trigger, block mode with continuous sampling.

5
7 6 5 4 3 2 1 0Bit

-

CHANNELS
ADCMODE, CHANNELS, max_channel

Sets the maximum number of ADC channels.

6
7 6 5 4 3 2 1 0Bit

Channels

Bits 3:0 max_channel

Instruction Reference

Micromega Corporation 15 uM-FPU64 Instruction Set - Release 411

Value Description
0 to 5 28-pin chip (AN0 to AN5)
0 to 8 44-pin chip (AN0 to AN8)

Sets the total number of analog channels to convert. The value specified is the maximum
channel number. e.g. A value of 2 will convert AN0, AN1, AN2.

VREF
ADCMODE, VREF, vref_bits

Selects voltage reference.

7
7 6 5 4 3 2 1 0Bit

V- V+

Bit 1 VREF-
IDE Symbol IDE Value Description
AVSS 0x00 AVSS is used as VREF-
AN1 0x02 AN1 is used as VREF-

Bit 0 VREF+
IDE Symbol IDE Value Description
AVDD 0x00 AVDD is used as VREF+
AN0 0x01 AN0 is used as VREF+

Examples: ADCMODE,0x10 Set manual trigger, single sample with one repeat per trigger.

ADCMODE,0x24 Set external trigger, single sample with five samples per trigger.

LOADWORD,1000 Set timer trigger every 1000 usec.
ADCMODE,0x30 Single sample with one repeat per trigger.

ADCMODE,0 Disable analog conversions.

See Also: ADCLOAD, ADCLONG, ADCSCALE, ADCTRIG, ADCWAIT

ADCSCALE Set scale multiplier for ADC

Syntax: ADCSCALE,channel

Description: Set the scale value or offset value for the specified channel to the floating point value in register 0.

if reg[A] is 32-bit,
ADCscale[channel] = reg[0] or ADCoffset[channel] = reg[0]

if reg[A] is 64-bit,
ADCscale[channel] = reg[128] or ADCoffset[channel] = reg[128]

Opcode: D3

Byte 2: channel

Instruction Reference

Micromega Corporation 16 uM-FPU64 Instruction Set - Release 411

-
7 6 5 4 3 2 1 0Bit

O Channel

Bit 4 Scale/Offset
IDE Symbol IDE Value Description
- 0x00 Sets scale value.
OFFSET 0x10 Sets offset value.

Bits 3:0 Channel
Value Description
0 to 5 28-pin chip (AN0 to AN5)
0 to 8 44-pin chip (AN0 to AN8)

Sets the scale value or offset value for channel to the floating point value in register 0. At device
reset, the scale value for all channels is set to 1.0, and the offset value for all channels is set to
zero.

See Also: ADCLOAD, ADCLONG, ADCMODE, ADCTRIG, ADCWAIT

ADCTRIG Trigger an A/D conversion

Syntax: ADCTRIG

Description: Trigger an analog conversion. If a conversion is already in progress the trigger is ignored. This is
normally used only when the ADCMODE is set for manual trigger.

Opcode: D2

See Also: ADCLOAD, ADCLONG, ADCMODE, ADCSCALE, ADCWAIT

ADCWAIT Wait for next A/D sample

Syntax: ADCWAIT

Description: Wait until the next analog conversion is complete and the analog values are ready.

Opcode: D6

When ADCMODE is set for manual trigger, this instruction can be used to wait until the conversion
started by the last ADCTRIG is done. ADCLONG and ADCLOAD automatically wait until the next
sample is ready. If the ADCMODE is set for timer trigger or external input trigger, this instruction
will wait until the next full conversion is completed.

Note: The instruction buffer should be empty when this instruction is executed. If there are other
instructions in the instruction buffer, or another instruction is sent before the ADCWAIT instruction
has been completed, the wait will terminate.

See Also: ADCLOAD, ADCLONG, ADCMODE, ADCSCALE, ADCTRIG

Instruction Reference

Micromega Corporation 17 uM-FPU64 Instruction Set - Release 411

ADDIND Add to Indirect Pointer

Syntax: ADDIND,register,unsignedByte

Description: The long integer value in register is multiplied by the unsignedByte and by the data type size and
the result is added to bits 23:0 of register 0 or 128 (pointer address). Bits 31:24 of register 0 or 128
are unchanged (pointer type). See the SETIND instruction for a description of pointers.

if reg[A] is 32-bit,
reg[0] (bits 31:24) = reg[0] (bits 31:24)
reg[0] (bits 23:0) = (reg[0] (bits23:0) + (reg[register] * unsignedByte * dataTypeSize

if reg[A] is 64-bit,
reg[128] (bits 63:32) = 0
reg[128] (bits 31:24) = reg128 (bits 63:24)
reg[128] (bits 23:0) = (reg[128] (bits23:0) + (reg[register] * unsignedByte *
dataTypeSize

Opcode: 78

Byte 2: register
Register number (0 to 255).

Byte 3: unsigned
Unsigned byte (0 to 255).

Special Cases: • if register = 0, the register value is not used in the pointer calculation
• if register = 0and unsignedByte = 0, the pointer is decremented by the data type size
• if result is < 0, reg[0|128] (bits 23:0) is set to 0
• if result is >= 0xFFFFFF, reg[0|128] (bits 23:0) is set to 0xFFFFFF

See Also: SETIND, WRIND, RDIND, COPYIND, LOADIND, SAVEIND

ALOADX Load register A from register X

Syntax: ALOADX

Description: Set register A to the value of register X, and increment X to select the next register in sequence.

reg[A] = reg[X] , X = X + 1

Opcode: 0D

Special Cases: • if reg[A] is 32-bit and reg[X] is 64-bit, only the lower 32-bits of reg[X] are copied
• if reg[A] is 64-bit and reg[X] is 32-bit, the upper 32-bits of reg[A] are set to zero

See Also: LOAD, LOADA, LOADX, XSAVE, XSAVEA

Instruction Reference

Micromega Corporation 18 uM-FPU64 Instruction Set - Release 411

ASIN Arc Sine

Syntax: ASIN

Description: Calculates the arc sine of an angle in the range of –pi/2 through pi/2. The initial value is contained
in register A, and the result in stored in register A.

reg[A] = asin(reg[A])

Opcode: 4A

Special Cases: • if reg[A] is NaN or its absolute value is greater than 1, then the result is NaN
• if reg[A] is 0.0, then the result is a 0.0
• if reg[A] is –0.0, then the result is –0.0

See Also: ACOS, ATAN, ATAN2, COS, SIN, TAN, DEGREES, RADIANS

ATAN Arc Tangent

Syntax: ATAN

Description: Calculates the arc tangent of an angle in the range of –pi/2 through pi/2. The initial value is
contained in register A, and the result in stored in register A.

reg[A] = atan(reg[A])

Opcode: 4C

Special Cases: • if reg[A] is NaN, then the result is NaN
• if reg[A] is 0.0, then the result is a 0.0
• if reg[A] is –0.0, then the result is –0.0

See Also: ACOS, ASIN, ATAN2, COS, SIN, TAN, DEGREES, RADIANS

ATAN2 Arc Tangent (with two registers)

Syntax: ATAN2,register

Description: Calculates the arc tangent of an angle in the range of –pi/2 through pi/2. The initial value is
determined by dividing the value in register A by the value of the specified register, and the result
in stored in register A. This instruction is used to convert rectangular coordinates (register A,
reg[register]) to polar coordinates (r, theta). The value of theta is stored in register A.

reg[A] = atan(reg[A] / reg[register])

Opcode: 4D

Byte 2: register

Instruction Reference

Micromega Corporation 19 uM-FPU64 Instruction Set - Release 411

Register number (0 to 255).

Special Cases: • if reg[A] is 32-bit and register is 64-bit, the value from register is converted to a 32-bit value
before being used, but the value stored in register remains unchanged
• if reg[A] is 64-bit and register is 32-bit, the value in register is converted to a 64-bit value before
being used, but value stored in register remains unchanged
• if reg[A] or reg[register] is NaN, then the result is NaN
• if reg[A] is 0.0 and reg[register] > 0, then the result is 0.0
• if reg[A] > 0 and finite, and reg[register] is +inf, then the result is 0.0
• if reg[A] is –0.0 and reg[register] > 0, then the result is –0.0
• if reg[A] < 0 and finite, and reg[register] is +inf, then the result is –0.0
• if reg[A] is 0.0 and reg[register] < 0, then the result is pi
• if reg[A] > 0 and finite, and reg[register] is –inf, then the result is pi
• if reg[A] is –0.0, and reg[register] < 0, then the result is –pi
• if reg[A] < 0 and finite, and reg[register] is –inf, then the result is –pi
• if reg[A] > 0, and reg[register] is 0.0 or –0.0, then the result is pi/2
• if reg[A] is +inf, and reg[register] is finite, then the result is pi/2
• if reg[A] < 0, and reg[register] is 0.0 or –0.0, then the result is –pi/2
• if reg[A] is –inf, and reg[register] is finite, then the result is –pi/2
• if reg[A] is +inf, and reg[register] is +inf, then the result is pi/4
• if reg[A] is +inf, and reg[register] is –inf, then the result is 3*pi/4
• if reg[A] is –inf, and reg[register] is +inf, then the result is –pi/4
• if reg[A] is –inf, and reg[register] is –inf, then the result is –3*pi/4

See Also: ACOS, ASIN, ATAN, COS, SIN, TAN, DEGREES, RADIANS

ATOF Convert ASCII string to floating point

Syntax: ATOF,string

Description: Converts a zero terminated ASCII string to a floating point value. and stores the result in register 0
or register 128.

Opcode: 1E

Byte 2: string
Zero-terminated ASCII string.

If register A is 32-bit, register 0 is loaded with the 32-bit floating point value. If register A is 64-
bit, register 128 is loaded with the 64-bit floating point value. The string to convert is sent
immediately following the opcode. The string can be in standard numeric format (e.g. 1.56, -0.5),
or exponential format (e.g. 10E6). Conversion will stop at the first invalid character, but data bytes
will continue to be read until a zero terminator is encountered. The string can contain the
following characters:

• leading whitespace (space or tab)
• sign (+ or -)
• decimal digits (0 to 9)
• decimal point (.)
• decimal digits (0 to 9)
• exponential (E or e)

Instruction Reference

Micromega Corporation 20 uM-FPU64 Instruction Set - Release 411

• sign (+ or -)
• decimal digits (0 to 9)

Examples: ATOF, "2.54" stores the value 2.54 in register 0 or 128
ATOF, "1E3" stores the value 1000.0 in register 0 or 128

Special Cases: • if string length > 127, string will be truncated to 127 characters

See Also: ATOL, FTOA, LTOA, STRTOF, STRTOL

ATOL Convert ASCII string to long integer

Syntax: ATOL,string

Description: Converts a zero terminated ASCII string to a long integer value.

Opcode: 9A

Byte 2: string
Zero-terminated ASCII string.

If register A is 32-bit, register 0 is loaded with the 32-bit long integer value. If register A is 64-bit,
register 128 is loaded with the 64-bit long integer value. The string to convert is sent immediately
following the opcode. Conversion will stop at the first invalid character, but data bytes will
continue to be read until a zero terminator is encountered. The string can contain the following
characters:

• leading whitespace (space or tab)
• sign (+ or -)
• decimal digits (0 to 9)

Examples: ATOL, "500000" stores the value 500000 in register 0 or 128
ATOL, "-5" stores the value -5 in register 0 or 128

Special Cases: • if string length > 127, string will be truncated to 127 characters

See Also: ATOF, FTOA, LTOA, STRTOF, STRTOL

BRA Unconditional branch

Syntax: BRA,relativeAddress

Description: This instruction branches unconditionally to the instruction at the relativeAddress. If the
relativeAddress is more than -128 to 127 bytes from the address of the next instruction, the JMP
instruction must be used.

Opcode: 81

Byte 2: relativeAddress
A signed byte value that is added to the address of the next instruction to determine the address to

Instruction Reference

Micromega Corporation 21 uM-FPU64 Instruction Set - Release 411

branch to.

Special Cases: • only valid inside user-defined functions stored in Flash memory.

See Also: BRA,cc, JMP, JMP,cc, GOTO, RET, RET,cc

BRA, cc Conditional branch

Syntax: BRA,conditionCode, relativeAddress

Description: If the condition is true, this instruction branches to the instruction at the relativeAddress address. If
the condition is false, no branch occurs. If the relativeAddress is more than -128 to 127 bytes from
the address of the next instruction, the JMP,cc instruction must be used.

Opcode: 82

Byte 2: conditionCode
The list of condition codes is as follows:

IDE Symbol IDE Value Description
Z 0x51 Zero
EQ 0x51 Equal
NZ 0x50 Not Zero
NE 0x50 Not Equal
LT 0x72 Less Than
LE 0x62 Less Than or Equal
GT 0x70 Greater Than
GE 0x60 Greater Than or Equal
PZ 0x71 Positive Zero
MZ 0x73 Negative Zero
INF 0xC8 Infinity
FIN 0xC0 Finite
PINF 0xE8 Positive Infinity
MINF 0xEA Minus infinity
NAN 0x44 Not-a-Number (NaN)
TRUE 0x00 True
FALSE 0xFF False

Byte 3: relativeAddress
A signed byte value that is added to the address of the next instruction to determine the address to
branch to.

Special Cases: • only valid inside user-defined functions stored in Flash memory.

See Also: BRA, JMP, JMP,cc, GOTO, RET, RET,cc

BREAK Debug breakpoint

Syntax: BREAK

Instruction Reference

Micromega Corporation 22 uM-FPU64 Instruction Set - Release 411

Description: If debug mode is enabled, a breakpoint occurs and the debug monitor is entered. If debug mode is
disabled, the instruction is ignored.

Opcode: F7

Used in conjunction with the built-in debugger.

See Also: TRACEOFF, TRACEON, TRACEREG, TRACESTR

CEIL Ceiling

Syntax: CEIL

Description: Calculates the floating point value equal to the nearest integer that is greater than or equal to the
floating point value in register A. The result is stored in register A.

reg[A] = ceil(reg[A])

Opcode: 52

Special Cases: • if is NaN, then the result is NaN
• if reg[A] is +infinity or -infinity, then the result is +infinity or -infinity
• if reg[A] is 0.0 or –0.0, then the result is 0.0 or –0.0
• if reg[A] is less than zero but greater than –1.0, then the result is –0.0

See Also: FLOOR, ROUND

CHECKSUM Calculate checksum for uM-FPU code

Syntax: CHECKSUM

Description: A checksum is calculated for the uM-FPU64 code and user-defined functions stored in Flash. The
checksum value is stored in register 0.

Opcode: F6

This can be used as a diagnostic test for confirming the state of a uM-FPU chip.

CLR Clear register

Syntax: CLR,register

Description: Set the value of the specified register to zero.

reg[register] = 0, status = longStatus(reg[register])

Opcode: 03

Byte 2: register

Instruction Reference

Micromega Corporation 23 uM-FPU64 Instruction Set - Release 411

Register number (0 to 255).

Special Cases: • if SETARGS is used, and register = 0
• if reg[A] is 32-bit, the value is stored in registers 1 to 9
• if reg[A] is 64-bit, the value is stored in registers 129 to 137

See Also: CLR0, CLRA, CLRX, SETARGS

CLR0 Clear register 0

Syntax: CLR0

Description: Set the value of register 0 (32-bit) or register 128 (64-bit) to zero.

if reg[A] is 32-bit, reg[0] = 0, status = longStatus(reg[0])
if reg[A] is 64-bit, reg[128] = 0, status = longStatus(reg[128])

Opcode: 06

Special Cases: • if SETARGS is used,
• if reg[A] is 32-bit, the value is stored in registers 1 to 9
• if reg[A] is 64-bit, the value is stored in registers 129 to 137

See Also: CLR, CLRA, CLRX, SETARGS

CLRA Clear register A

Syntax: CLRA

Description: Set the value of register A to zero.

reg[A] = 0, status = longStatus(reg[A])

Opcode: 04

See Also: CLR, CLR0, CLRX

CLRX Clear register X

Syntax: CLRX

Description: Set the value of register A to zero, and increment X to select the next register in sequence.

reg[X] = 0, status = longStatus(reg[X]), X = X + 1

Opcode: 05

Special Cases: • if reg[X] is 32-bit, X will not be incremented past register 127
• if reg[X] is 64-bit, X will not be incremented past register 255

Instruction Reference

Micromega Corporation 24 uM-FPU64 Instruction Set - Release 411

See Also: CLR, CLR0, CLRA

COPY Copy registers

Syntax: COPY,fromRegister,toRegister

Description: Copy the value from fromRegister to toRegister.

reg[toRegister] = reg[fromRegister], status = longStatus(reg[toRegister])

Opcode: 07

Byte 2: fromRegister
Register number (0 to 255).

Byte 3: toRegister
Register number (0 to 255).

Special Cases: • if toRegister is 32-bit and fromRegister is 64-bit, the upper 32-bits of fromRegister are set to zero
• if toRegister is 64-bit and fromRegister is 32-bit, only the lower 32-bits of toRegister are copied

See Also: COPYA, COPYX, COPY0, FCOPYI, LCOPYI

COPYA Copy register A

Syntax: COPYA,register

Description: Copy the value of register A to register.

reg[register] = reg[A], status = longStatus(reg[A])

Opcode: 08

Byte 2: register
Register number (0 to 255).

Special Cases: • if reg[A] is 32-bit and register is 64-bit, the upper 32-bits of register are set to zero
• if reg[A] is 64-bit and register is 32-bit, only the lower 32-bits of reg[A] are copied

See Also: COPY, COPYX, COPY0, FCOPYI, LCOPYI

COPYIND Copy using Indirect Pointers

Syntax: COPYIND,fromRegister,toRegister,countRegister

Description: The number of data items specified by the countRegister are copied from the location pointed to
by fromRegister to the location pointed to by toRegister. See the SETIND instruction for a
description of pointers.

Instruction Reference

Micromega Corporation 25 uM-FPU64 Instruction Set - Release 411

Opcode: 79

Byte 2: fromRegister
Register number (0 to 255). The register contains the from pointer.

Byte 3: toRegister
Register number (0 to 255). The register contains the to pointer.

Byte 4: countRegister
Register number (0 to 255). The register contains the number of items to copy.

See Also: SETIND, ADDIND, WRIND, RDIND, LOADIND, SAVEIND

COPYX Copy register X

Syntax: COPYX,register

Description: Copy the value of register X to register, and increment X to select the next register in sequence.

reg[register] = reg[X], status = longStatus(reg[register]), X = X + 1

Opcode: 09

Byte 2: register
Register number (0 to 255).

Special Cases: • if reg[X] is 32-bit and register is 64-bit, the upper 32-bits of register are set to zero
• if reg[X] is 64-bit and register is 32-bit, only the lower 32-bits of reg[X] are copied

See Also: COPY, COPYA, COPY0, FCOPYI, LCOPYI

COPY0 Copy register 0

Syntax: COPY0,register

Description: If register A is 32-bit, the value of register 0 is copied to register.
If register A is 64-bit, the value of register 128 is copied to register.

if reg[A] is 32-bit, then reg[register] = reg[0], status = longStatus(reg[0])
if reg[A] is 64-bit, then reg[register] = reg[128], status = longStatus(reg[128])

Opcode: 10

Byte 2: register
Register number (0 to 255).

Special Cases: • if reg[A] is 32-bit and register is 64-bit, the upper 32-bits of register are set to zero
• if reg[A] is 64-bit and register is 32-bit, only the lower 32-bits of reg[128] are copied

Instruction Reference

Micromega Corporation 26 uM-FPU64 Instruction Set - Release 411

See Also: COPY, COPYA, COPYX, FCOPYI, LCOPYI

COS Cosine

Syntax: COS

Description: Calculates the cosine of the angle (in radians) in register A and stores the result in register A.

reg[A] = cosine(reg[A])

Opcode: 48

Special Cases: • if reg[A] is NaN or an infinity, then the result is NaN

See Also: ACOS, ASIN, ATAN, ATAN, SIN, TAN, DEGREES, RADIANS

DEGREES Convert radians to degrees

Syntax: DEGREES

Description: The floating point value in register A is converted from radians to degrees and the result is stored
in register A.

Opcode: 4E

Special Cases: • if reg[A] is NaN, then the result is NaN

See Also: ACOS, ASIN, ATAN, ATAN2, COS, SIN, TAN, RADIANS

DELAY Delay (in milliseconds)

Syntax: DELAY,period

Description: The uM-FPU64 pauses for the number of milliseconds specified by period. If period is zero, then
the number of milliseconds is loaded from register 0. If foreground/background processing has
been enabled, the other process can continue execution during the delay period.

Opcode: DB

Bytes 2-3: period
A 16-bit unsigned value that specified the delay period in milliseconds. (0 to 65535)

Special Cases: • the period is the minimum delay period, it can be up to one millisecond longer

See Also: TIMESET, TIMELONG, TICKLONG, RTC

DEVIO Device Input/Output

Syntax: DEVIO,device,action{,…}

Instruction Reference

Micromega Corporation 27 uM-FPU64 Instruction Set - Release 411

Description: This instruction provides support for devices interfaced to the uM-FPU64 chip using the digital
pins. The DEVIO instruction is designed to interact with byte oriented I/O devices. It provides
general I/O capabilities and higher level device specific support. All DEVIO instructions start with
the opcode, followed by a byte that specifies the device, and a byte which specifies the action to
perform with the device. Depending on the action, there may be additional bytes required by the
instruction. The supported devices are: general access RAM, FIFO buffers, 1-wire bus, I2C bus,
SPI bus, asynchronous serial port, counters, servo controllers, LCD, and VDrive2 USB Flash
drives. Additional information is available in the Using the uM-FPU64 DEVIO Instruction
document.

DEVIO, device, DISABLE
DEVIO, device, ENABLE, pin, config
DEVIO, device, {device specific actions}
DEVIO, device, WRITE_REG8{+MSB}{+LSB}, register
DEVIO, device, WRITE_REG16{+MSB}{+LSB}, register
DEVIO, device, WRITE_REG32{+MSB}+LSB}, register
DEVIO, device, WRITE_REG64{+MSB}{+LSB}, register
DEVIO, device, WRITE_BYTE, byte
DEVIO, device, WRITE_WORD, byte, byte
DEVIO, device, WRITE_NBYTE, count, byte, ...
DEVIO, device, WRITE_REP, count, byte
DEVIO, device, WRITE_STR, string
DEVIO, device, WRITE_SBUF
DEVIO, device, WRITE_SSEL
DEVIO, device, WRITE_MEM, count
DEVIO, device, WRITE_MEMA, address, count
DEVIO, device, WRITE_MEMR, regAddr, regCount
DEVIO, device, READ_REG8{+MSB}{+LSB}{+ZE}{+SE}, register
DEVIO, device, READ_REG16{+MSB}{+LSB}{+ZE}{+SE}, register
DEVIO, device, READ_REG32{+MSB}{+LSB}{+ZE}{+SE}, register
DEVIO, device, READ_REG64{+MSB}{+LSB}{+ZE}{+SE}, register
DEVIO, device, READ_SKIP, count
DEVIO, device, READ_SBUF
DEVIO, device, READ_SSEL
DEVIO, device, READ_MEM, count
DEVIO, device, READ_MEMA, address, count
DEVIO, device, READ_MEMR, regAddr, regCount
DEVIO, device, READ_MEMR, regAddr, regCount
DEVIO, device, LOAD_DEVICE, xopdev

Opcode: DA

Byte 2: device

7 6 5 4 3 2 1 0Bit
NumberDevice

Bits 7:4 Device Type
IDE Symbol IDE Value Device Type
MEM 0x00 Memory
FIFO1 0x01 FIFO buffer 1
FIFO2 0x02 FIFO buffer 2

Instruction Reference

Micromega Corporation 28 uM-FPU64 Instruction Set - Release 411

FIFO3 0x03 FIFO buffer 3
FIFO4 0x04 FIFO buffer 4
OWIRE 0x10 1-Wire
I2C 0x20 I2C
SPI 0x30 SPI
ASYNC 0x40 Asynchronous Serial Port
COUNTER 0x50 Counter (Digital input)
SERVO 0x60 Servo Output
LCD 0x80 LCD
loadable device 0xA0 Reserved for loadable devices
loadable device 0xB0 Reserved for loadable devices
loadable device 0xC0 Reserved for loadable devices
loadable device 0xD0 Reserved for loadable devices
loadable device 0xE0 Reserved for loadable devices
loadable device 0xF0 Reserved for loadable devices

Bits 3:0 Device Number
Value Description
0 - 15 Device number (for device types that support multiple devices)

Byte 3: action
An unsigned byte specifying the device action. A description of actions that are common to all
devices is shown below. For device specific actions, see separate descriptions for each device type.
(e.g. DEVIO, ASYNC)

Disable (0x00)
DEVIO, device, DISABLE
Disable the specified device and release the digital pins.

Enable (0x01)
DEVIO, device, ENABLE, pin, config
Enable the specified device and assign the digital pins. The enable instruction must be used to
initialize a device before any other device instructions are used.

Byte 4: pin
Specifies the first pin used by the specified device (D0 to D23).

Byte 5: config
Configuration byte for initializing the device. See the device specific descriptions for
details.

Device Specific Actions (0x02 - 0x0F)
 For device specific actions, see the separate documentation for each device type.
(e.g. DEVIO, ASYNC)

Write 8-bit Value from Register (0x10, 0x14)
DEVIO, device, WRITE_REG8, register
Write the lower 8-bit value from the specified register to the device.

Write 16-bit Value from Register (0x11, 0x15)
DEVIO, device, WRITE_REG16{+MSB}{+LSB}, register

Instruction Reference

Micromega Corporation 29 uM-FPU64 Instruction Set - Release 411

Write the lower 16-bit value from the specified register to the device. The value can be written
with the most significant byte or least significant byte first.

Write 32-bit Value from Register (0x12, 0x16)
DEVIO, device, WRITE_REG32{+MSB}{+LSB}, register
Write the lower 32-bit word from the specified register to the device. The value can be written
with the most significant byte or least significant byte first.

Write 64-bit Value from Register (0x13, 0x17)
DEVIO, device, WRITE_REG64{+MSB}{+LSB}, register
Write the 64-bit value from the specified register to the device. The value can be written with
the most significant byte or least significant byte first.

7 6 5 4 3 2 1 0Bit
1 L- Bits

Bit 3 Byte Order
IDE Symbol IDE Value Description
MSB 0x00 Most significant byte first
LSB 0x04 Least significant byte first

Bits 1:0 Number of Bits
IDE Symbol IDE Value Description
WRITE_REG8 0x10 1 byte (8-bit)
WRITE_REG16 0x11 2 bytes (16-bit)
WRITE_REG32 0x12 3 bytes (32-bit)
WRITE_REG64 0x13 4 bytes (64-bit)

Byte 4: register
Register number (0 to 255).

Write Byte (0x20)
DEVIO, device, WRITE_BYTE, byte

Write the 8-bit value specified to the device.

Byte 4: byte
Unsigned 8-bit value to write to device.

Write Word (0x21)
DEVIO, device, WRITE_WORD, word

Write the 16-bit value specified to the device.

Bytes 4-5: word
Unsigned 16-bit value to write to device.

Write Multiple Bytes (0x22)
DEVIO, device, WRITE_NBYTE, count, byte, ...

Write the number of bytes specified by count to the device.

Byte 4: count
Unsigned 8-bit integer specifying the number of bytes to write.

Bytes 5-n: byte, ...
Unsigned 8-bit values to write to device.

Instruction Reference

Micromega Corporation 30 uM-FPU64 Instruction Set - Release 411

Write Repeat Byte (0x23)
DEVIO, device, WRITE_REP, count, byte

Write the same byte repeatedly to the device the number of times specified by count.

Byte 4: count
Unsigned 8-bit integer specifying the number of times to write the byte.

Byte 5: byte
Unsigned 8-bit value to write to device.

Write String (0x24)
DEVIO, device, WRITE_STR, string

Write the zero-terminated string to the device. If string length > 127, string will be
truncated to 127 characters. The zero terminator is not sent unless the device is MEM,
FIFO1, FIFO2, or FIFO3.

Bytes 4-n: string
Zero-terminated string to write to device.

Write from String Buffer (0x25)
DEVIO, device, WRITE_SBUF

Write the contents of the string buffer to the device. A zero terminator is also sent if the
device is MEM, FIFO1, FIFO2, or FIFO3.

Write from String Selection (0x26)
DEVIO, device, WRITE_SSEL

Write the string selection to the device. A zero terminator is also sent if the device is
MEM, FIFO1, FIFO2, or FIFO3.

Write from Memory Address 0 (0x27)
DEVIO, device, WRITE_MEM, count

Read count bytes from memory, starting at memory address 0, and write the bytes to the
device.

Byte 4: count
Unsigned 8-bit integer specifying the number of bytes to write.

Write from Memory Address (0x28)
DEVIO, device, WRITE_MEMA, address, count

Read count bytes from memory, starting at the memory address specified by address, and
write the bytes to the device.

Byte 4-5: address
Unsigned 16-bit integer specifying the memory address to write to.

Byte 6-7: count
Unsigned 16-bit integer specifying the number of bytes to write.

Write from Memory Address specified by Register (0x29)
DEVIO, device, WRITE_MEMR, regAddr, regCount

Read the number of bytes specified in regCount from memory, starting at the memory
address specified in regAddr, and write the bytes to the device.

Instruction Reference

Micromega Corporation 31 uM-FPU64 Instruction Set - Release 411

Byte 4: regAddr
The lower 16-bits of the register specify the memory address to write to.

Byte 5: regCount
The lower 16-bits of the register specify the number of bytes to write.

Read 8-bit value to Register (0x30, 0x34, 0x38, 0x3C)
DEVIO, device, READ_REG8{+ZE}{+SE}, register

Read an 8-bit value from the device and store in the lower 8 bits of the specified register.
The remaining bits in the register can be filled with either zero-extend or sign-extend.

Read 16-bit value to Register (0x31, 0x35, 0x39, 0x3D)
DEVIO, device, READ_REG16{+MSB}{+LSB}{+ZE}{+SE}, register

Read a 16-bit value from the device and store in the lower 16 bits of the specified register.
The value can be stored with the most significant byte or least significant byte first. The
remaining bits in the register can be filled with either zero-extend or sign-extend.

Read 32-bit value to Register (0x32, 0x36, 0x3A, 0x3E)
DEVIO, device, READ_REG32{+MSB}{+LSB}{+ZE}{+SE}, register

Read a 32-bit value from the device and store in the lower 32 bits of the specified register.
The value can be stored with the most significant byte or least significant byte first. The
remaining bits in the register can be filled with either zero-extend or sign-extend.

Read 64-bit value to Register (0x33, 0x37, 0x3B, 0x3F)
DEVIO, device, READ_REG64{+MSB}{+LSB}{+ZE}{+SE}, register

Read a 64-bit value from the device and store in specified register. The value can be
stored with the most significant byte or least significant byte first. The remaining bits in
the register can be filled with either zero-extend or sign-extend.

7 6 5 4 3 2 1 0Bit
3 LS Bits

Bit 3 Sign Extend
IDE Symbol IDE Value Description
ZE 0x00 Zero extend.
SE 0x08 Sign extend.

Bit 2 Byte Order
IDE Symbol IDE Value Description
MSB 0x00 Most significant byte first
LSB 0x04 Least significant byte first

Bits 1:0 Number of Bits
IDE Symbol IDE Value Description
READ_REG8 0x30 1 byte (8-bit)
READ_REG16 0x31 2 bytes (16-bit)
READ_REG32 0x32 3 bytes (32-bit)
READ_REG64 0x33 4 bytes (64-bit)

Byte 4: register
Register number (0 to 255).

Read and Skip Bytes (0x43)

Instruction Reference

Micromega Corporation 32 uM-FPU64 Instruction Set - Release 411

DEVIO, device, READ_SKIP, count
Read and skip count bytes from device.

Byte 4: count
Unsigned 8-bit integer specifying the number of bytes to skip.

Read String to String Buffer (0x45)
DEVIO, device, READ_SBUF

Read zero-terminated string from device and store in string buffer.

Read String to String Selection (0x46)
DEVIO, device, READ_SSEL

Read zero-terminated string from device and store at string selection point.

Read to Memory Address 0 (0x47)
DEVIO, device, READ_MEM, count

Read count bytes from the device and store in memory, starting at memory address 0.

Byte 4: count
Unsigned byte specifying the number of bytes to read.

Read to Memory Address (0x48)
DEVIO, device, READ_MEMA, address, count

Read count bytes from the device and store in memory, starting at the memory address
specified by address.

Byte 4-5: address
Unsigned 16-bit integer specifying the memory address to read from.

Byte 6-7: count
Unsigned 16-bit integer specifying the number of bytes to read.

Read to Memory Address specified by Register (0x49)
DEVIO, device, READ_MEMR, regAddr, regCount

Read the number of bytes specified in regCount from the device and store in memory
starting at the memory address specified in regAddr.

Byte 4: regAddr
The lower 16-bits of the register specify the memory address to read from.

Byte 5: regCount
The lower 16-bits of the register specify the number of bytes to read.

Load Device (0x5x)
DEVIO, device, LOAD_DEVICE, xopdev

Attach the loadable device to the device code loaded in the XOP area of Flash memory as
specified by xopdev. Ram is allocated from the dynamic allocation for use by the device.
This call is required before using a loadable device.

DEVIO, ASYNC Asynchronous Serial Port Interface

Instruction Reference

Micromega Corporation 33 uM-FPU64 Instruction Set - Release 411

Syntax: DEVIO,ASYNC,action{,…}

Description: This instruction provides support for sending and receiving data through an asynchronous serial
connection. The serial connection can be configured as receive only (1 pin), transmit only (1 pin),
receive and transmit (2 pins), or receive and transmit with hardware flow control (4 pins). The
baud rate is selectable from 300 baud to 115,200 baud.

DEVIO, ASYNC, DISABLE
DEVIO, ASYNC, ENABLE, pin, config

Opcode: DA

Byte 2: ASYNC (0x40)

Byte 3: action
An unsigned byte specifying the device action. Actions that are specific to the asynchronous
serial device are shown below. For actions that are common to all devices, see the DEVIO
description.

Disable (0x00)
DEVIO, ASYNC, DISABLE

Disable the asynchronous serial connection and release the digital pins.

Enable (0x01)
DEVIO, ASYNC, ENABLE, pin, config

Select the pins to use for the asynchronous serial connection, set the baud rate, and enable
the asynchronous serial port.

Byte 4: pin
Specifies the pins used for the asynchronous serial connection.
D0 to D8 28-pin uM-FPU64 chip
D0 to D18 44-pin uM-FPU64 chip

Pin Assignments
Receive only

pin Rx
Transmit only

pin Tx
Receive and Transmit

pin Rx
pin+1 Tx

Receive and Transmit with Flow Control
pin Rx
pin+1 Tx
pin+2 /CTS
pin+3 /RTS

Byte 5: config
7 6 5 4 3 2 1 0Bit
- - Type Baud Rate

Bits 5:4 Connection Type

Instruction Reference

Micromega Corporation 34 uM-FPU64 Instruction Set - Release 411

IDE Symbol IDE Value Description
RX 0x00 Receive Only
TX 0x10 Transmit Only
RX_TX 0x20 Receive and Transmit
RX_TX_HW 0x30 Receive and Transmit with Hardware

Flow Control
Bit 3:0 Baud Rate

IDE Symbol IDE Value Description
- - 57,600 baud
BAUD_300 0x01 300 baud
BAUD_600 0x02 600 baud
BAUD_1200 0x03 1200 baud
BAUD_2400 0x04 2400 baud
BAUD_4800 0x05 4800 baud
BAUD_9600 0x06 9600 baud
BAUD_19200 0x07 19200 baud
BAUD_38400 0x08 38400 baud
BAUD_57600 0x09 57600 baud
BAUD_115200 0x0A 115200 baud

See Also: SERIN, SEROUT

DEVIO, COUNTER 32-bit Counter Interface

Syntax: DEVIO,COUNTER+n,action{,…}

Description: This instruction provides support for detecting and counting digital input changes. Optional
support is provided for switch debouncing and automatic repeat when the input is held in the
active state. If the active state is high, a rising edge on the digital input is counted. If the active
state is low, a falling edge on the digital input is counted. If debouncing is enabled, changes to the
digital input will be ignored for the period specified. The debounce period is set to 10 milliseconds
by default. If a repeat value is specified, and the signal is held in the active state for the specified
delay, the counter will increment at the specified rate while the signal remains in the active state.

DEVIO, COUNTER+n, DISABLE
DEVIO, COUNTER+n, ENABLE, pin, config
DEVIO, COUNTER+n, DEBOUNCE, period
DEVIO, COUNTER+n, REPEAT, delay, rate
DEVIO, COUNTER+n, READ_COUNT
DEVIO, COUNTER+n, EDGE1_MSEC
DEVIO, COUNTER+n, EDGE1_USEC
DEVIO, COUNTER+n, EDGE2_MSEC
DEVIO, COUNTER+n, EDGE2_USEC

Opcode: DA

Byte 2: COUNTER+n (0x50-0x53)

Byte 3: action
An unsigned byte specifying the device action. Actions that are specific to counter devices are
shown below. For actions that are common to all devices, see the DEVIO description.

Instruction Reference

Micromega Corporation 35 uM-FPU64 Instruction Set - Release 411

Disable (0x00)
DEVIO, COUNTER+n, DISABLE

Disable the counter and release the digital pin.

Enable (0x01)
DEVIO, COUNTER+n, ENABLE, pin, config

Selects the pin to use for the counter, the active level for counting, whether an event is
associated with the counter, and enable the counter input.

Byte 4: pin
Specifies the pin to use for the counter input.
D0 to D8 28-pin uM-FPU64 chip
D0 to D8 44-pin uM-FPU64 chip

Byte 5: config

A
7 6 5 4 3 2 1 0Bit

Event-
Bit 7 Active State

IDE Symbol IDE Value Description
LOW 0x00 Active low.
HIGH 0x80 Active high.

Bits 2:0 Event Number
IDE Symbol IDE Value Description
NO_EVENT 0x00 No event.
EVENT1 0x01 Event 1.
EVENT2 0x02 Event 2.
EVENT4 0x03 Event 3.
EVENT5 0x04 Event 4.
EVENT6 0x05 Event 5.
EVENT7 0x06 Event 6.
EVENT1 0x07 Event 7.

Set Debounce Period (0x02)
DEVIO, COUNTER+n, DEBOUNCE, period

Specifies the debounce period in milliseconds. The counters are initialized with a
debounce period of 10 milliseconds.

Byte 4-5: period (unsigned word)
Specifies the debounce period in milliseconds (0 to 32677). Transitions on the counter
input are ignored during the debounce period.

Set Repeat Rate (0x03)
DEVIO, COUNTER+n, REPEAT, delay, rate

Specifies the automatic repeat parameters. The counters are initialized with no automatic
repeat.

Byte 4-5: delay (unsigned word)
Specifies the delay in milliseconds before automatic repeat is enabled. (0 to 32677)

Byte 6-7: rate (unsigned word)
Specifies the rate in milliseconds that the counter will be incremented if the counter input
remains active. (1 to 32677)

Instruction Reference

Micromega Corporation 36 uM-FPU64 Instruction Set - Release 411

Read Count (0x04)
DEVIO, COUNTER+n, READ_COUNT

Returns the counter value in register 0.

Read Active Edge time in milliseconds (0x05)
DEVIO, COUNTER+n, EDGE1_MSEC

Returns the time in milliseconds (32-bit value) in register 0 or 128.

Read Active Edge time in microseconds (0x06)
DEVIO, COUNTER+n, EDGE1_USEC

Returns the time in microseconds (64-bit value) in register 0 or 128.

Read Not Active Edge time in milliseconds (0x07)
DEVIO, COUNTER+n, EDGE2_MSEC

Returns the time in milliseconds (32-bit value) in register 0 or 128.

Read Not Active Edge time in microseconds (0x08)
DEVIO, COUNTER+n, EDGE2_USEC

Returns the time in microseconds (64-bit value) in register 0 or 128.

DEVIO, FIFO FIFO Buffer Interface

Syntax: DEVIO,FIFO1,action{,…}
DEVIO,FIFO2,action{,…}
DEVIO,FIFO3,action{,…}
DEVIO,FIFO4,action{,…}

Description: These instructions provide support for First In First Out (FIFO) buffers. They can be used to buffer
data, or to transfer data from one process to another. Memory must be allocated to the FIFOs from
the dynamic allocation area using one of the following instructions:

DEVIO, MEM, ALLOCATE, memSize, fifoSize
DEVIO, FIFOn, ALLOC_MEM, size
DEVIO, FIFOn, ALLOC_MEMR, regSize

DEVIO, FIFOn, DISABLE
DEVIO, FIFOn, ENABLE, pin, config
DEVIO, FIFOn, CLEAR
DEVIO, FIFOn, USED
DEVIO, FIFOn, FREE
DEVIO, FIFOn, STATUS
DEVIO, FIFOn, CLEAR_OVERFLOW
DEVIO, FIFOn, ALLOC_MEM, size
DEVIO, FIFOn, ALLOC_MEMR, regSize

Opcode: DA

Byte 2: FIFO1-FIFO3 (0x01-0x04)

Byte 3: action
An unsigned byte specifying the device action. Actions that are specific to FIFO devices are
shown below. For actions that are common to all devices, see the DEVIO description.

Instruction Reference

Micromega Corporation 37 uM-FPU64 Instruction Set - Release 411

Disable (0x00)
DEVIO, FIFOn, DISABLE

Disables the specified FIFO device.

Enable (0x01)
DEVIO, FIFOn, ENABLE, pin, config

Initialize the FIFO.
Byte 4: pin

Unused.

Byte 5: config
7 6 5 4 3 2 1 0Bit

Type-
Bits 2:0 Event Type

IDE Symbol IDE Value Description
NO_EVENT 0x00 No event
EMPTY 0x01 Set event flag when buffer is empty.
NOT_EMPTY 0x02 Set event flag when data in buffer.
HALF_EMPTY 0x03 Set event flag when buffer is half empty.
HALF_FULL 0x04 Set event flag when buffer is half full.
FULL 0x05 Set event flag when buffer is full.
OVERFLOW 0x06 Set event flag when buffer overflows.

Clear Buffer (03)
DEVIO, FIFOn, CLEAR

Clear the buffer by resetting the input index and output index.

Get Number of Bytes Used (0x04)
DEVIO, FIFOn, USED

Gets the number of bytes currently used in the memory buffer and returns the value in
register 0.

Get Number of Bytes Free (0x05)
DEVIO, FIFOn, FREE

Get the number of bytes currently available in the memory buffer and returns the value in
register 0.

Get Buffer Status (0x06)
DEVIO, FIFOn, STATUS

Get the current status of the memory buffer. The buffer status is returned in register 0.
The status byte is as follows:

O
7 6 5 4 3 2 1 0Bit

Type-F H E
Bit 7 Buffer Overflow
Bit 6 Buffer Full
Bit 5 Buffer Half Full
Bit 4 Buffer Empty
Bits 2:0 Event Type

Clear Overflow Bit (0x07)

Instruction Reference

Micromega Corporation 38 uM-FPU64 Instruction Set - Release 411

DEVIO, FIFOn, CLEAR_OVERFLOW
Clear the overflow bit for the memory buffer. The overflow bit is set if an attempt is made
to store data to the buffer when the buffer is already full. Once the overflow bit is set, no
data will not be stored in the buffer until the overflow bit has been cleared.

Dynamic Memory Allocation (0x08)
DEVIO, FIFOn, ALLOC_MEM, size

The number of memory bytes specified by size are allocated from the dynamic
allocation for use by FIFOn. If not enough bytes are available in the dynamic allocation,
the size of FIFOn is set to zero.

Byte 4: size
Unsigned 16-bit word specifying the number of consecutive memory bytes to allocate
from the dynamic allocation to FIFOn.

Dynamic Memory Allocation (0x09)
DEVIO, FIFOn, ALLOC_MEMR, regSize

The number of memory bytes specified by the value of regSize are allocated from the
dynamic allocation. The memory address of the first byte is returned in register 0. If there
are not enough bytes available in the dynamic allocation, the size of FIFOn is set to zero.

Byte 4: regSize
An 8-bit register value. The lower 16-bits of the register specify the number of
consecutive memory bytes to allocate from the dynamic allocation to FIFOn.

DEVIO, I2C I2C Bus Interface

Syntax: DEVIO,I2C,action{,…}

Description: This instruction provides support for communicating with I2C devices using a local I2C bus on the
specified pair of digital pins.

DEVIO, I2C, DISABLE
DEVIO, I2C, ENABLE, pin, config
DEVIO, I2C, START_WRITE, device
DEVIO, I2C, STOP
DEVIO, I2C, START_READ, byteCount

Opcode: DA

Byte 2: I2C (0x20)

Byte 3: action
An unsigned byte specifying the device action. Actions that are specific to I2C devices are
shown below. For actions that are common to all devices, see the DEVIO description.

Disable (0x00)
DEVIO, I2C, DISABLE

Disable the I2C bus and release the digital pins.

Instruction Reference

Micromega Corporation 39 uM-FPU64 Instruction Set - Release 411

Enable (0x01)
DEVIO, I2C, ENABLE, pin, config

Selects the pins to use for the I2C bus, the bus speed, and enables the I2C bus.

Byte 4: pin
D0 to D8 28-pin uM-FPU64 chip
D0 to D22 44-pin uM-FPU64 chip

Pin Assignments
pin SDA
pin+1 SCL

Byte 5: config

-
7 6 5 4 3 2 1 0Bit

- S- - - - -
Bit 0 Speed

IDE Symbol IDE Value Description
SLOW 0x00 100 kHz
FAST 0x01 400 kHz

Start Write (0x02)
DEVIO, I2C, START_WRITE, device

Sends the start write sequence to the I2C bus, and sets the status bits for the acknowledge.
Z=ACK, NZ=NAK

Byte 4: device
Unsigned byte specifying the 8-bit I2C device address. (7-bit I2C device address left
justified and a least significant bit of zero (e.g. 0x00 to 0xFF). If the device byte is zero,
the lower 8 bits of register 0 are used for the device address. This allows for variable
device addresses (e.g. for addressing multiple EEPROMs chips).

Stop (0x03)
DEVIO, I2C, STOP

Sends the stop sequence to the I2C bus. This action is required to end a write transaction,
but is not required for read transactions. Read transactions handle the stop sequence
automatically.

Start Read (0x04)
DEVIO, I2C, START_READ, byteCount

Sends the start read sequence to the I2C bus, and specifies the number bytes in the read
transfer. If the START_READ action is optional, but can result in more efficient read
transfers if multiple read actions are required. If no START_READ action is used, then
each DEVIO read operation is a separate read transaction.

Byte 4: byteCount
Specifies the number bytes to read. A NAK will be sent after the last byte read followed by
the stop sequence. Any of the DEVIO read operations can be used to read the bytes in the
transfer

Instruction Reference

Micromega Corporation 40 uM-FPU64 Instruction Set - Release 411

DEVIO, LCD LCD Interface

Syntax: DEVIO,LCD,action{,…}

Description: This instruction provides support for LCD displays that are compatible with the widely used
HD44780 chipset. It uses a 4-bit parallel interface, and two control pins if configured as write-
only, or three control pins if configured for read and write.

DEVIO, LCD, DISABLE
DEVIO, LCD, ENABLE, pin, config
DEVIO, LCD, CLEAR
DEVIO, LCD, HOME
DEVIO, LCD, MOVE, row, column
DEVIO, LCD, MOVE_REG, rowReg, colReg
DEVIO, LCD, CMD, command
DEVIO, LCD, INTERFACE, type
DEVIO, LCD, BACKLIGHT_ON
DEVIO, LCD, BACKLIGHT_OFF

Opcode: DA

Byte 2: LCD (0x80)

Byte 3: action
An unsigned byte specifying the device action. Actions that are specific to the LCD device are
shown below. For actions that are common to all devices, see the DEVIO description.

Disable (0x00)
DEVIO, LCD, DISABLE

Disable the LCD device and release the digital pins.

Enable (0x01)
DEVIO, LCD, ENABLE, pin, config

Selects the pins to use for the LCD, configures and initializes the display.

Byte 4: pin
Specifies the pins to use for the LCD interface.
D0 to D8 28-pin uM-FPU64 chip
D0 to D22 44-pin uM-FPU64 chip

Pin Assignments
pin to pin+3 4-bit data
pin+4 E pin
pin+5 RS pin
pin+6 RW pin (if enabled)

Byte 5: config

7 6 5 4 3 2 1 0Bit
- R F Row Col

Instruction Reference

Micromega Corporation 41 uM-FPU64 Instruction Set - Release 411

Bit 6 RW pin setting
IDE Symbol IDE Value Description
- 0x00 Read disabled, RW pin grounded
READ_ENABLED 0x40 Read enabled, RW pin required

Bit 5 Font
IDE Symbol IDE Value Description
- 0x00 5x7 font
FONT_5x10 0x20 5x10 font

Bits 4:3 Row
IDE Symbol IDE Value Description
ROWS_1 0x00 1 row
ROWS_2 0x08 2 rows
ROWS_4 0x10 4 rows

Bits 2:0 Column
IDE Symbol IDE Value Description
COLS_8 0x00 8 columns
COLS_12 0x01 12 columns
COLS_16 0x02 16 columns
COLS_20 0x03 20 columns
COLS_40 0x04 40 columns

Clear Display (0x02)
DEVIO, LCD, CLEAR

Clear the LCD display.

Home (0x03)
DEVIO, LCD, HOME

Move cursor to the home position.

Move to row, column (0x04)
DEVIO, LCD, MOVE, row, column

Move to the row and column specified.
Byte 4: row

Unsigned byte specifying the row number (0 to 3).

Byte 5: column
Unsigned byte specifying the column number (0 to 39).

Move to row, column using register (0x05)
DEVIO, LCD, MOVE_REG, rowReg, colReg

Move to the row and column specified by the values in rowReg and colReg registers.
Byte 4: rowReg

Register containing the row number.

Byte 5: column
Register containing column number.

Send Command (0x06)
DEVIO, LCD, CMD, command

Send HD44780U compatible LCD command.

Instruction Reference

Micromega Corporation 42 uM-FPU64 Instruction Set - Release 411

Byte 4: command
Unsigned byte specifying the HD44780U compatible LCD command.

Device Type (0x07)
DEVIO, LCD, INTERFACE, type

Used to select an I2C controller for the LCD interface. If this command is not used, digital
I/O pins are used for a direct interface. A devio(I2C, ENABLE, …) function call
must be done previously, and this function call must be done before the devio(LCD,
ENABLE, …) function call.

Byte 4: type

Device
7 6 5 4 3 2 1 0Bit

Address

Bits 6:4 Device
IDE Symbol IDE Value Description
- 0x00 digital pins (default)
ST7036 0x10 I2C controller
PCF8574 0x28 I2C controller
MCP23008 0x30 I2C controller

Bits 3:0 Address
Lower bits of I2C device address.
ST7036 2 bits Device address: 0x78 to 0x7B
PCF8574 3 bits Device address: 0x40 to 0x47
MCP23008 3 bits Device address: 0x40 to 0x47

Turn BackLight On (0x08)
DEVIO, LCD, BACKLIGHT_ON

When a PCF8574 or MCP23008 controller is used, this command turns on the
backlight.

Turn BackLight Off (0x09)
DEVIO, LCD, BACKLIGHT_OFF

When a PCF8574 or MCP23008 controller is used, this command turns off the
backlight.

Instruction Reference

Micromega Corporation 43 uM-FPU64 Instruction Set - Release 411

DEVIO, MEM Memory Interface

Syntax: DEVIO,MEM,action{,…}

Description: This instruction stores data to the general memory area in RAM. The total amount of available
RAM is 2304 bytes, which is split into a foreground memory, background memory, FIFO1,
FIFO2, FIFO3, and FIFO4, dynamic allocation pool. The default allocation of RAM is as follows:

Foreground 2304 bytes
Background 0 bytes
FIFO1 0 bytes
FIFO2 0 bytes
FIFO3 0 bytes
FIFO4 0 bytes
Dynamic Allocation 0 bytes

The allocation can be changed with the DEVIO,MEM,ALLOCATE instruction. All memory not
allocated to the Foreground, Background, FIFO1, FIFO2, FIFO3, FIFO4 is available for dynamic
allocation to FIFOs or loadable devices using the DEVIO,FIFOn,ALLOC_MEM,size,
DEVIO,FIFOn,ALLOC_MEMR,regSize, or DEVIO,device,LOAD_DEVICE,xopdev
instruction.

DEVIO, MEM, DISABLE
DEVIO, MEM, ENABLE, pin, config
DEVIO, MEM, ALLOCATE, memSize, fifoSize
DEVIO, MEM, ALLOCATE, memSize, fgSize

Opcode: DA

Byte 2: MEM (0x00)

Byte 3: action
An unsigned byte specifying the device action. Actions that are specific to the memory device
are shown below. For actions that are common to all devices, see the DEVIO description.

Disable (0x00)
DEVIO, MEM, DISABLE

This action is not required when using general memory in RAM.

Enable (0x01)
DEVIO, MEM, ENABLE, pin, config

This action is not required when using general memory in RAM.

Byte 4: pin
Unused.

Byte 5: config
Unused.

Allocate Memory Buffers (0x02)
DEVIO, MEM, ALLOCATE, memSize, fifoSize

Instruction Reference

Micromega Corporation 44 uM-FPU64 Instruction Set - Release 411

The 2304 byes of available memory are allocated to the foreground, background, FIFO1,
FIFO2, FIFO3, and FIFO4. The 4-bit value for each memory type specifies the amount of
memory to allocate. At least 256 bytes are always allocated to the foreground. If the sum
of all allocations is greater than the maximum 2304 bytes of available RAM, the
foreground allocation is as specified, but no memory bytes are allocated to the
background, FIFO1, FIFO2, FIFO3, or FIFO4. All remaining bytes are used for dynamic
allocation.

Byte 4: memSize
Unsigned byte specifying the number of bytes to allocate to the foreground and
background memory buffers.

Foreground
7 4 3 0Bit

Background

Bits 7:4 Foreground Memory Allocation
Bits 3:0 Background Memory Allocation

Byte 5-6: fifoSize (unsigned word)
Unsigned 16-bit word specifying the number of bytes to allocate to the FIFO buffers.

FIFO1
15 12 11 8Bit

FIFO2 FIFO3
7 4 3 0

FIFO4
Bits 15:12 FIFO1 Memory Allocation
Bits 11:8 FIFO2 Memory Allocation
Bits 7:4 FIFO3 Memory Allocation
Bits 3:0 FIFO4 Memory Allocation

Memory Allocation Codes
Value Description
0x0 No memory
0x1 2 bytes
0x2 4 bytes
0x3 8 bytes
0x4 16 bytes
0x5 32 bytes
0x6 64 bytes
0x7 128 bytes
0x8 256 bytes
0x9 512 bytes
0xA 1024 bytes
0xB 2048 bytes
0xC 4096 bytes
0xD 8192 bytes
0xE 16384 bytes
0xF default (FG: 1024 bytes, BG: 1024 bytes, FIFO1-4: 64 bytes)

Allocate Memory Buffers (0x02)
DEVIO, MEM, ALLOCATE, memSize, fgSize

If the foreground memory allocation bits (bits 7:4) of memSize are zero, then fgSize
specifies the number of memory byes allocated to the foreground, and no memory is
allocated to FIFO1, FIFO2, FIFO3, and FIFO4. At least 256 bytes are always allocated to

Instruction Reference

Micromega Corporation 45 uM-FPU64 Instruction Set - Release 411

the foreground. The background memory allocation bits (bits 3:0) of memSize specify
the number of memory byes allocated to the background. Any remaining bytes are
available for dynamic allocation memory for FIFOs or loadable devices.

Byte 4: 0

Byte 5-6: fgSize (unsigned word)
Unsigned 16-bit word specifying the number of memory bytes to allocate to the
foreground.

DEVIO, OWIRE 1-Wire Bus Interface

Syntax: DEVIO,OWIRE,action{,…}

Description: This instruction provides support for communicating with 1-Wire devices using a local 1-Wire bus
on the specified digital pin.

DEVIO, OWIRE, DISABLE
DEVIO, OWIRE, ENABLE, pin, config
DEVIO, OWIRE, RESET
DEVIO, OWIRE, SELECT, regAddr
DEVIO, OWIRE, VERIFY, regAddr
DEVIO, OWIRE, SEARCH, count, regAddr
DEVIO, OWIRE, ALARM, count, regAddr
DEVIO, OWIRE, FAMILY_SEARCH, count, regAddr
DEVIO, OWIRE, FAMILY_ALARM, count, regAddr

Opcode: DA

Byte 2: OWIRE (0x10-0x1F)

Byte 3: action
An unsigned byte specifying the device action. Actions that are specific to 1-Wire devices are
shown below. For actions that are common to all devices, see the DEVIO description.

Disable (0x00)
DEVIO, OWIRE, DISABLE

Disable the 1-wire bus and release the digital pin.

Enable (0x01)
DEVIO, OWIRE, ENABLE, pin, config

The enable action is used to assign the digital pin for the 1-wire bus and initialize the bus.

Byte 4: pin
D0 to D8 28-pin uM-FPU64 chip
D0 to D22 44-pin uM-FPU64 chip

Pin Assignments
pin 1-Wire bus

Byte 5: config
Not used.

Instruction Reference

Micromega Corporation 46 uM-FPU64 Instruction Set - Release 411

Send Reset Pulse (0x02)
DEVIO, OWIRE, RESET

Sends a 1-wire reset pulse to the 1-wire bus.

Select Device (0x03)
DEVIO, OWIRE, SELECT, regAddr

Selects the device on the 1-wire bus.

Byte 4: regAddr
If regAddr is 32-bit, the SKIP_ROM 1-wire command is used and no address is sent.
If regAddr is 64-bit, the MATCH_ROM 1-wire command is used, and the 64-bit device
address in regAddr is sent.

Verify Device (0x04)
DEVIO, OWIRE, VERIFY, regAddr

Verifies that a device of the specified address is present on the 1-wire bus.

Byte 4: regAddr
A 64-bit register specifying the device address.

Search All (0x05)
DEVIO, OWIRE, SEARCH, count, regAddr

Searches for all devices on the 1-wire bus.

Byte 4: count
Unsigned byte specifying the maximum number of addresses to store in consecutive
registers starting at register regAddr.

Byte 5: regAddr
The first of count 64-bit registers that the address of all devices found on the 1-wire bus.

Alarm Search (0x06)
DEVIO, OWIRE, ALARM, count, regAddr

Searches for all devices on the 1-wire bus.

Byte 4: count
Unsigned byte specifying the maximum number of addresses to store in consecutive
registers starting at register regAddr.

Byte 5: regAddr
The first of count 64-bit registers that the address of all devices found on the 1-wire bus
that have an active alarm value.

Family Search (0x07)
DEVIO, OWIRE, FAMILY_SEARCH, count, regAddr

Searches for all devices on the 1-wire bus.

Byte 4: count
Unsigned byte specifying the maximum number of addresses to store in consecutive
registers starting at register regAddr.

Instruction Reference

Micromega Corporation 47 uM-FPU64 Instruction Set - Release 411

Byte 5: regAddr
The first of count 64-bit registers that the address of all devices found on the 1-wire bus
that are part of the specified family of devices.

Family Alarm Search (0x08)
DEVIO, OWIRE, FAMILY_ALARM, count, regAddr

Searches for all devices on the 1-wire bus.

Byte 4: count
Unsigned byte specifying the maximum number of addresses to store in consecutive
registers starting at register regAddr.

Byte 5: regAddr
The first of count 64-bit registers that the address of all devices found on the 1-wire bus
that have an active alarm value and are part of the specified family of devices.

DEVIO, SDFAT SD card with FAT16 and FAT32 support

Syntax: DEVIO,SDFAT,action{,…}

Description: This instruction provides support for SD cards and supports the FAT16 and FAT32 file systems.
The SD card can be used in raw mode for general non-volatile storage of up to 32GB of data, or in
file mode with FAT16 and FAT32 support. Files stored on SD cards can be read by any device that
supports the FAT16 and FAT32 file system..

DEVIO, SDFAT, DISABLE
DEVIO, SDFAT, ENABLE, pin, config
DEVIO, SDFAT, STATUS
DEVIO, SDFAT, GET_VALUE, item
DEVIO, SDFAT, READ_BLOCK, regBlock, regPtr
DEVIO, SDFAT, WRITE_BLOCK, regBlock, regPtr
DEVIO, SDFAT, FIND, filename
DEVIO, SDFAT, NEXT
DEVIO, SDFAT, OPEN, type, filename
DEVIO, SDFAT, CLOSE
DEVIO, SDFAT, UPDATE
DEVIO, SDFAT, GET_POSITION
DEVIO, SDFAT, SET_POSITION, regAddress

Opcode: DA

Byte 2: SDFAT (0xA0)

Byte 3: action
An unsigned byte specifying the device action. Actions that are specific to the SDFAT device
are shown below. For actions that are common to all devices, see the DEVIO description.

Disable (0x00)
DEVIO, SDFAT, DISABLE

Disable the SDFAT device and release the digital pins.

Enable (0x01)

Instruction Reference

Micromega Corporation 48 uM-FPU64 Instruction Set - Release 411

DEVIO, SDFAT, ENABLE, pin, config
Selects the pins to use for the SDFAT, configures and initializes the display.

Byte 4: pin
Specifies the pins to use for the SD card select.
D0 to D8 28-pin uM-FPU64 chip
D0 to D22 44-pin uM-FPU64 chip

Pin Assignments
pin SD card select

Byte 5: config

7 6 5 4 3 2 1 0Bit
ParE

Bit 7 Write Block Enable
IDE Symbol IDE Value Description
- 0x00 WRITE_BLOCK action disabled
WRBLK_ENABLE 0x80 WRITE_BLOCK action disabled

Bits 1:0 Partition
IDE Symbol IDE Value Description
- 0x00 Use partition 1 on SD card (default)
- 0x01 Use partition 2 on SD card (default)
- 0x02 Use partition 3 on SD card (default)
- 0x03 Use partition 4 on SD card (default)

Status (0x02)
DEVIO, SDFAT, STATUS

Returns the current status of the SDFAT device in register 0.
0 OK
-1 End of File
< -2 Error value

Get Value (0x03)
DEVIO, SDFAT, GET_VALUE, item

Returns the value specified by item.
0 Current status
1 Volume Size

Read Block (0x04)
DEVIO, SDFAT, READ_BLOCK, regBlock, regPtr

Write Block (0x05)
DEVIO, SDFAT, WRITE_BLOCK, regBlock, regPtr

Find File (0x06)
DEVIO, SDFAT, FIND, filename

Next File (0x07)
DEVIO, SDFAT, NEXT

Instruction Reference

Micromega Corporation 49 uM-FPU64 Instruction Set - Release 411

Open File (0x08)
DEVIO, SDFAT, OPEN, type, filename

Close FIle (0x09)
DEVIO, SDFAT, CLOSE

Update FIle (0x0A)
DEVIO, SDFAT, UPDATE

Get Position (0x0B)
DEVIO, SDFAT, GET_POSITION

Set Position (0x0C)
DEVIO, SDFAT, SET_POSITION, regAddress

DEVIO, SERVO Servo Control Interface

Syntax: DEVIO,SERVO+n,action{,…}

Description: This instruction is used to interface with servo controllers on the specified digital pins.

DEVIO, SERVO+n, DISABLE
DEVIO, SERVO+n, ENABLE, pin, config
DEVIO, SERVO+n, PULSE, register
DEVIO, SERVO+n, SPEED, register
DEVIO, SERVO+n, TIME, register
DEVIO, SERVO+n, MOVE
DEVIO, SERVO+n, HOME
DEVIO, SERVO+n, READ_PULSE
DEVIO, SERVO+n, STATUS

Opcode: DA

Byte 2: device (0x60-63)

Byte 3: action
An unsigned byte specifying the device action. Actions that are specific to servo controllers
are shown below. For actions that are common to all devices, see the DEVIO description.

Disable (0x00)
DEVIO, SERVO+n, DISABLE

Disable the servo controller and release the digital pin.

Enable (0x01)
DEVIO, SERVO+n, ENABLE, pin, config

Initialize the servo controller and optionally assign event.

Byte 4: pin
D0 to D8 28-pin uM-FPU64 chip
D0 to D22 44-pin uM-FPU64 chip

Instruction Reference

Micromega Corporation 50 uM-FPU64 Instruction Set - Release 411

Byte 5: config

E
7 6 5 4 3 2 1 0Bit

Event-
Bit 7 Extended Mode

IDE Symbol IDE Value Description
- 0x00 Normal, Pulse widths

(800 usec to 2200 usec).
EXTENDED 0x80 Extended Mode, Pulse widths

(500 usec to 2500 usec).
Bits 2:0 Event Number

IDE Symbol IDE Value Description
NO_EVENT 0x00 No event.
EVENT1 0x01 Event 1.
EVENT2 0x02 Event 2.
EVENT4 0x03 Event 3.
EVENT5 0x04 Event 4.
EVENT6 0x05 Event 5.
EVENT7 0x06 Event 6.
EVENT1 0x07 Event 7.

Set Pulse Width (0x02)
DEVIO, SERVO+n, PULSE, register

Sets the pulse width of the servo to the value specified in the register..
Byte 4: register

Set Speed (0x03)
DEVIO, SERVO+n, SPEED, register

Sets the speed of movement (microseconds/second) for the servo to the value specified in
the register.

Byte 4: register

Set Time (0x04)
DEVIO, SERVO+n, TIME, register

Sets the time of movement (milliseconds) for all servos in a group move to the value
specified in the register. The movement will not occur until the MOVE action is received.

Byte 4: register

Move (0x05)
DEVIO, SERVO+n, MOVE

Move all of the servos in a group move in the time specified by the TIME action.

Move Home (0x06)
DEVIO, SERVO+n, HOME

Move all active servos to the home position (1500 microseconds).

Read Pulse Width (0x07)
DEVIO, SERVO+n, READ

Return the current pulse width of the servo in register 0.

Get Servo Status (0x08)

Instruction Reference

Micromega Corporation 51 uM-FPU64 Instruction Set - Release 411

DEVIO, SERVO+n, STATUS
Return the current status of all servos in register 0. The status bit is zero is the servo is in
position, and one if the servo is still moving. The status value is as follows:

7 6 5 4 3 2 1 0Bit
3- 2 1 0

Bit 3 Servo 3 Status
Bit 2 Servo 2 Status
Bit 1 Servo 1 Status
Bit 0 Servo 0 Status

DEVIO, SPI SPI Interface

Syntax: DEVIO,SPI+n,action{,…}

Description: This instruction provides support for communicating with SPI devices using a local SPI bus on the
specified digital pins.

DEVIO, SPI+n, DISABLE
DEVIO, SPI+n, ENABLE, pin, config
DEVIO, SPI+n, CS_LOW
DEVIO, SPI+n, CS_HIGH

Opcode: DA

Byte 2: device (0x30-0x3F)

Byte 3: action
An unsigned byte specifying the device action. Actions that are specific to SPI devices are
shown below. For actions that are common to all devices, see the DEVIO description.

Disable (0x00)
DEVIO, SPI+n, DISABLE

Disable the SPI device and release the digital pin.

Enable (0x01)
DEVIO, SPI+n, ENABLE, pin, config

Initialize the SPI device according to the configuration byte.
Byte 4: pin

D0 to D8 28-pin uM-FPU64 chip
D0 to D22 44-pin uM-FPU64 chip (Device 0)
D0 to D22 44-pin uM-FPU64 chip (Device 1-15)

Pin Assignments
Device 0

pin SCLK Serial clock (from FPU)
pin+1 MOSI Master Output, Slave Input (from FPU)
pin+2 MISO Master input, Slave Output (to FPU)

Device 1-15
pin /CS Slave chip select (from FPU)

Instruction Reference

Micromega Corporation 52 uM-FPU64 Instruction Set - Release 411

Byte 5: config

7 6 5 4 3 2 1 0Bit
Mode SpeedR

Bit 7 Read
IDE Symbol IDE Value Description
- 0x00 Hold MOSI low during read.
READ_HIGH 0x80 Hold MOSI high during read.

Bits 6:5 Clock Mode
IDE Symbol IDE Value Description
MODE0 0x00 Idle state low, data captured on rising edge.
MODE1 0x20 Idle state low, data captured on falling edge.
MODE2 0x40 Idle state high, data captured on falling edge.
MODE3 0x60 Idle state high, data captured on rising edge.

Bits 4:0 Speed
Value Description
0 78.125 kHz
1 89.285 kHz
2 104.166 kHz
3 125.000 kHz
4 156.25 kHz
5 208.333 kHz
6 312.500 kHz
7 625.000 kHz
8 1.250 MHz
9 2.500 MHz
10 1.667 MHz
11 2.000 MHz
12 2.500 MHz
13 3.333 MHz
14 5.000 MHz
15 10.000 MHz

Set CS low (0x02)
DEVIO, SPI+n, CS_LOW

Sets the pin CS pin assigned to SPI device n low.

Set CS high (0x03)
DEVIO, SPI+n, CS_HIGH

Sets the pin CS pin assigned to SPI device n high.

When multiple devices are used on the local SPI bus, device 0 is used to assign the hardware SPI
pins, and device 1 to n are used to specify the pin that is connected to the /SS pin of each slave
device. Each SPI device can have a unique SPI mode and clock speed.

Instruction Reference

Micromega Corporation 53 uM-FPU64 Instruction Set - Release 411

DIGIO Digital Input/Output

Syntax: DIGIO,action{,mode}

Description: This instruction is used to read and write the digital pins. The 28-pin uM-FPU64 chip has 9 digital
pins (D0 to D8) and the 44-pin uM-FPU64 chip has 23 digital pins (D0 to D22). The byte
immediately following the opcode specifies the action and pin number. The WRITE_BITS,
READ_BITS, WRITE_BITP, and READ_BITP actions require an additional mode byte. The
additional bytes used by the instruction, and the various actions that can be performed, are
described below.

Opcode: D0

Byte 2: action

Action
7 6 5 4 3 2 1 0Bit

Pin

Bits 7:5 Action
IDE Symbol IDE Value Description
LOW 0x00 Set Pin Low
HIGH 0x20 Set Pin High
TOGGLE 0x40 Toggle Pin
INPUT 0x60 Read Input from Pin
WRITE_BITS 0x80 Write Serial Bits to Pins
READ_BITS 0xA0 Read Serial Bits from Pins
WRITE_BITP 0xC0 Write Parallel Bits to Pins
READ_BITP 0xE0 Read Parallel Bits from Pins

Bits 4:0 Pin
Value Description
D0 - D8 The 28-pin chip has digital pins D0 to D8.
D0 - D22 The 44-pin chip has digital pins D0 to D22.

Set Pin Low
DIGIO, LOW+pin

The pin is configured as an output and set low.

Set Pin High
DIGIO, HIGH+pin

The pin is configured as an output and set high.

Toggle Pin
DIGIO, TOGGLE+pin

The pin is configured as an output, and set to the opposite value as the current pin value.

Read Input from Pin
DIGIO, INPUT+pin

The pin is configured as an input, and the value of the pin is read. The result is stored in
the status register.

Instruction Reference

Micromega Corporation 54 uM-FPU64 Instruction Set - Release 411

If pin is low, status = Z
If pin is high, status = NZ

Write Serial Bits to Pins
DIGIO, WRITE_BITS+pin, mode

The value in register 0 is written serially to pin and pin+1 according to the mode
specified.

pin data pin
pin+1 clock pin

Byte 3: mode (for WRITE_BITS and READ_BITS actions)
7 6 5 4 3 2 1 0Bit

F # of BitsMP

Bit 7 Sample Time (READ_BITS)
IDE Symbol IDE Value Description
PRE 0x00 Sample pin level before clock pulse.
POST 0x80 Sample pin level after clock pulse.

Bit 6 Bit order
IDE Symbol IDE Value Description
MSB 0x00 Read most significant bit first.
LSB 0x40 Read least significant bit first.

Bit 5 Clock Speed
IDE Symbol IDE Value Description
FAST 0x00 Fast speed clock (743 kHZ).
SLOW 0x20 Slow speed clock (534 kHZ).

Bits 4:0 Number of Bits
Value Description
0 - 31 The number of bits to transfer. A value of 0 specifies 32 bits.

Read Serial Bits from Pins
DIGIO, READ_BITS+pin, mode

The value is read serially from pin and pin+1, according to the mode specified, and the
result is stored in register 0.

pin data pin
pin+1 clock pin

Byte 3: mode
(see description above)

Write Parallel Bits to Pins
DIGIO, WRITE_BITP+pin, mode

The pins are configured as outputs, and the value in register 0 is written in parallel to the
specified pins.

Byte 3: mode (for WRITE_BITP and READ_BITP actions)

7 6 5 4 3 2 1 0Bit
- # of Bits-I

Bit 7 Invert
IDE Symbol IDE Value Description

Instruction Reference

Micromega Corporation 55 uM-FPU64 Instruction Set - Release 411

- - Bits are not inverted.
INVERT 0x40 Bits are inverted before write and after read.

Bits 4:0 Number of Bits
Value Description
1 - 9 The 28-pin chip has 9 digital pins (D0 to D8).
1 - 23 The 44-pin chip has 23 digital pins (D0 to D22).

Read Parallel Bits from Pins
DIGIO, READ_BITP+pin, mode

The pins are configured as inputs, and the value of the specified pins are read in parallel
and stored in register 0.

Byte 3: mode
(see description above)

Examples: DIGIO, LOW+1 Pin D1 is set to output low.
DIGIO, WRITE_BITS+3, 8 The lower 8 bits of register 0 is serially shifted out most

significant bit first, using D3 as the data pin, and D4 as the
clock pin.

DIGIO, READ_BITP+5, 4 The lower 4 bits of register 0 are set to the value of pins D5,
D6, D7, and D8.

See Also: DEVIO

DREAD Read 64-bit value

Syntax: DREAD,register

Description: The 64-bit value of register is returned.

Opcode: 73

Byte 2: register
Register number (0 to 255).

Returns: byte1, byte2, byte3, byte4, byte5, byte6, byte7, byte8
The eight bytes representing the 64-bit value (MSB first) must be read immediately following this
instruction.

Special Cases: • if register is 32-bit, the value is converted to 64-bit with sign extended before being sent.

See Also: SETREAD, FREAD, FREAD0, FREADA, FREADX, LREAD, LREAD0, LREADA,
LREADX, LREADBYTE, LREADWORD, RDIND

DWRITE Write 64-bit value

Syntax: DWRITE,register,value

Description: The 64-bit integer value is stored in register.

reg[register] = 64-bit value, status = longStatus(reg[register])

Instruction Reference

Micromega Corporation 56 uM-FPU64 Instruction Set - Release 411

Opcode: 72

Byte 2: register
Register number (0 to 255).

Bytes 3-10: value
64-bit value represented by eight bytes (MSB first).

Special Cases: • if register is 32-bit, only the lower 32-bits of the value are stored.
• if register = 0 or 128, and SETARGS is not active

• if reg[A] is 32-bit, the value is stored in registers 0
• if reg[A] is 64-bit, the value is stored in registers 128

• if register = 0 or 128, and SETARGS is active
• if reg[A] is 32-bit, the value is stored in registers 1 to 9
• if reg[A] is 64-bit, the value is stored in registers 129 to 137

See Also: FWRITE, FWRITE0, FWRITEA, FWRITEX, LWRITE, LWRITE0, LWRITEA,
LWRITEX, WRIND, SETARGS

EVENT Background events

Syntax: EVENT,action{,function}

Description: Used to manage background events.

Opcode: 7F

Byte 2: action

7 6 5 4 3 2 1 0Bit
Action Event

Bits 7:4 Action
IDE Symbol IDE Value Description
DISABLE 0x00 Disable event.
ENABLE 0x10 Enable event.
PERIOD 0x20 Set period for timer event (1 to 3).
SET 0x30 Set event flag.
CLEAR 0x40 Clear event flag.
WAIT 0x50 Wait for event flag.
TEST 0x60 Test event flag.

Bits 3:0 Event
IDE Symbol IDE Value Description
CALL 0x00 Call background function event.
EVENT1,TIMER1 0x01 Software event, Timer 1 event.
EVENT2,TIMER2 0x02 Software event, Timer 2 event.
EVENT3,TIMER3 0x03 Software event, Timer 3 event.
EVENT4,FIFO1 0x04 Software event, FIFO1 event.

Instruction Reference

Micromega Corporation 57 uM-FPU64 Instruction Set - Release 411

EVENT5,FIFO2 0x05 Software event, FIFO2 event.
EVENT6,FIFO3 0x06 Software event, FIFO3 event.
EVENT7,FIFO4 0x07 Software event, FIFO4 event.
SERIN 0x08 SERIN receive event.
ASYNC 0x09 DEVIO,ASYNC receive event.
EXTIN 0x0A External input event.
ADC 0x0B ADC ready event.
RTC 0x0C Real-time clock event.
DELAY_FG 0x0E Delay Foreground event. (SET only)
DELAY_BG 0x0F Delay Background event. (SET only)

EVENT, DISABLE+event
Disables a background event.

EVENT, ENABLE+event, function
Enables a background event. When the event flag is set, the specified function is executed in
the background. If the event is a timer event (TIMER1, TIMER2, TIMER3) the time period
must also be set to a value other than zero to enable the timer.

Byte 3: function
Function number to execute when event occurs.

EVENT, PERIOD+event
Sets the time period for timer events (TIMER1, TIMER2, TIMER3). If register A is 32-bit,
the time period in milliseconds is read from the lower 16 bits of register 0. If register A is 64-
bit, the time period in milliseconds is read from the lower 16 bits of register 128. If the period
is set to zero, the timer will be disabled. If the period is set to a non-zero value, then timer is
enabled.

EVENT, SET+event
Set the event flag and causes the background function to execute.

EVENT, CLEAR+event
Clears the event flag. The event flag is cleared automatically when an event occurs, so this
action is not normally required.

EVENT, WAIT+event
Waits until the event flag is set, then clears the event flag. It there are other instructions in the
instruction buffer, or another instruction is sent before the EVENT,WAIT+event instruction
has completed, it will terminate and clear the event flag.

EVENT, TEST+event
Tests the event flag and sets the the internal status byte.

Status = Z event flag not set
Status = NZ event flag set

Notes: The ENABLE and DISABLE actions are used to implement background events. The SET, CLEAR,
WAIT, and TEST actions are used to work with event flags in the foreground.

Examples: LOADWORD, 500 Load time period value..
EVENT, ENABLE+TIMER1, 1 Enable timer 1 event with 500 msec period. Function 1 called

Instruction Reference

Micromega Corporation 58 uM-FPU64 Instruction Set - Release 411

on event.
EVENT, ENABLE+RTC, 2 Enable RTC event. Function 2 called on event.

Special Cases: • when setting the period for the TIMER1, TIMER2, TIMR3, TIMER4 events, only the lower 16
bits of reg[0 | 128] are used

EXP The value e raised to a power

Syntax: EXP

Description: Calculates the value of e (2.7182818) raised to the power of the floating point value in register A.
The result is stored in register A.

reg[A] = exp(reg[A])

Opcode: 45

Special Cases: • if reg[A] is NaN, then the result is NaN
• if reg[A] is +infinity or greater than 88, then the result is +infinity
• if reg[A] is –infinity or less than -88, then the result is 0.0

See Also: FPOW, FPOWI, FPOW0, EXP10, LOG, LOG10, ROOT, SQRT

EXP10 The value 10 raised to a power

Syntax: EXP10

Description: Calculates the value of 10 raised to the power of the floating point value in register A, and stores
the result in register A.

reg[A] = exp10(reg[A])

Opcode: 46

Special Cases: • if reg[A] is NaN, then the result is NaN
• if reg[A] is +infinity, then the result is +infinity
• if reg[A] is 32-bit, and reg[A] is greater than 38, then the result is +infinity
• if reg[A] is 64-bit, and reg[A] is greater than 308, then the result is +infinity
• if reg[A] is –infinity, the result is 0.0
• if reg[A] is 32-bit, and reg[A] is less than -38, then the result is 0.0
• if reg[A] is 64-bit, and reg[A] is less than -308, then the result is 0.0

See Also: FPOW, FPOWI, FPOW0, EXP, LOG, LOG10, ROOT, SQRT

EXTLONG Load value of external input counter

Syntax: EXTLONG

Description: Load register 0 with the external input count.

Instruction Reference

Micromega Corporation 59 uM-FPU64 Instruction Set - Release 411

if reg[A] is 32-bit,
reg[0] = external input count, status = longStatus(reg[0])

if reg[A] is 64-bit,
reg[128] = external input count, status = longStatus(reg[128])

Opcode: E1

See Also: EXTSET, EXTWAIT

EXTSET Set value of external input counter

Syntax: EXTSET

Description: The external input count is set to the value in register 0. If the value is -1 (0xFFFFFFFF) the
external input counter is disabled.

if reg[A] is 32-bit,
external input count = reg[0]

if reg[A] is 64-bit,
external input count = reg[128]

Opcode: E0

Special Cases: • if reg[A] is 64-bit, then only the lower 32 bits are used to set the external input count

See Also: EXTLONG, EXTWAIT

EXTWAIT Wait for next external input pulse

Syntax: EXTWAIT

Description: Wait for the next external input to occur. If there are other instructions in the instruction buffer, or
another instruction is sent before the EXTWAIT instruction has completed, it will terminate.

Opcode: E2

See Also: EXTLONG, EXTSET

FABS Floating point absolute value

Syntax: FABS

Description: Sets the floating value in register A to the absolute value.

reg[A] = | reg[A] |

Opcode: 3F

Special Cases: • if reg[A] is NaN, then the result is NaN

Instruction Reference

Micromega Corporation 60 uM-FPU64 Instruction Set - Release 411

See Also: FNEG, LABS, LNEG

FADD Floating point add

Syntax: FADD,register

Description: The floating point value in register is added to the value in register A.

reg[A] = reg[A] + reg[register]

Opcode: 21

Byte 2: register
Register number (0 to 255).

Special Cases: • if reg[A] is 32-bit and register is 64-bit, the value is converted to 32-bit before being used
• if reg[A] is 64-bit and register is 32-bit, the value is converted to 64-bit before being used
• if either value is NaN, then the result is NaN
• if one value is +infinity and the other is –infinity, then the result is NaN
• if one value is +infinity and the other is not –infinity, then the result is +infinity
• if one value is -infinity and the other is not +infinity, then the result is -infinity

See Also: FADD0, LADD, LADDI, LADD0

FADDI Floating point add immediate value

Syntax: FADDI,signedByte

Description: The signed byte value is converted to floating point and added to the value in register A.

reg[A] = reg[A] + float(signedByte)

Opcode: 33

Byte 2: signedByte
A signed byte value (-128 to 127).

Special Cases: • if reg[A] is NaN, then the result is NaN
• if reg[A] is +infinity, then the result is +infinity
• if reg[A] is -infinity, then the result is -infinity

See Also: FADD, FADD0, LADD, LADDI, LADD0

FADD0 Floating point add register 0

Syntax: FADD0

Description: If register A is 32-bit, the floating point value in register 0 is added to the value in register A. If
register A is 64-bit, the floating point value in register 128 is added to the value in register A.

Instruction Reference

Micromega Corporation 61 uM-FPU64 Instruction Set - Release 411

if reg[A] is 32-bit, reg[A] = reg[A] + reg[0]
if reg[A] is 64-bit, reg[A] = reg[A] + reg[128]

Opcode: 2A

Special Cases: • if either value is NaN, then the result is NaN
• if one value is +infinity and the other is –infinity, then the result is NaN
• if one value is +infinity and the other is not –infinity, then the result is +infinity
• if one value is -infinity and the other is not +infinity, then the result is -infinity

See Also: FADD, FADDI, LADD, LADDI, LADD0

FCALL Call Flash memory user defined function

Syntax: FCALL,function

Description: The user-defined function, stored in Flash memory, is executed. Up to 16 levels of nesting is
supported for function calls. The register A selection is stored by FCALL. If SETARGS was used
prior to FCALL, the register A selection saved by the first SETARGS instruction is stored. If no
SETARGS was used prior to FCALL, the current register A selection is stored. The register A
selection is restored by the RET or RET,CC instruction that returns from the function being called.
The uM-FPU IDE provides support for programming user defined functions in Flash memory
using the serial debug monitor.

Opcode: 7E

Byte 2: function
A function number (0 to 63).

Special Cases: • only valid inside user-defined functions stored in Flash memory.
• if the user function is not defined, register 0 is set to NaN, and execution continues.

See Also: BRA, BRA,cc, GOTO, JMP, JMP,cc, RET, RET,cc

FCMP Floating point compare

Syntax: FCMP,register

Description: Compares the floating point value in register A with the value in register and sets the internal
status byte.

status = floatStatus(reg[A] - reg[register])

Opcode: 28

Byte 2: register
Register number (0 to 255).

 The status byte can be read with the READSTATUS instruction. It is set as follows:

Instruction Reference

Micromega Corporation 62 uM-FPU64 Instruction Set - Release 411

1 - - - - S

7 6 5 4 3 2 1 0Bit

N Z
Bit 2 Not-a-Number Set if either value is not a valid number
Bit 1 Sign Set if reg[A] < reg[register]
Bit 0 Zero Set if reg[A] = reg[register]

If neither Bit 0 or Bit 1 is set, reg[A] > reg[register]

Special Cases: • if reg[A] is 32-bit and register is 64-bit, the value is converted to 32-bit before being used
• if reg[A] is 64-bit and register is 32-bit, the value is converted to 64-bit before being used

See Also: FCMPI, FCMP0, FCMP2, LCMP, LCMPI, LCMP0, LCMP2, LUCMP, LUCMPI,
LUCMP0, LUCMP2

FCMPI Floating point compare immediate value

Syntax: FCMPI,signedByte

Description: The signed byte value is converted to floating point and compared to the floating point value in
register A.

The status byte can be read with the READSTATUS instruction. It is set as follows:

 1 - - - - S

7 6 5 4 3 2 1 0Bit

N Z
Bit 2 Not-a-Number Set if either value is not a valid number
Bit 1 Sign Set if reg[A] < float(signedByte)
Bit 0 Zero Set if reg[A] = float(signedByte)

If neither Bit 0 or Bit 1 is set, reg[A] > float(signedByte)
status = floatStatus(reg[A] - float(signedByte))

Opcode: 3A

Byte 2: signedByte
A signed byte value (-128 to 127).

The status byte can be read with the READSTATUS instruction.

See Also: FCMP, FCMP0, FCMP2, LCMP, LCMPI, LCMP0, LCMP2, LUCMP, LUCMPI,
LUCMP0, LUCMP2

FCMP0 Floating point compare register 0

Syntax: FCMP0

Description: If register A is 32-bit, the floating point value in register A is compared with the value in register 0,
and the internal status byte is set. If register A is 64-bit, the signed long integer value in register A
is compared with the value in register 128, and the internal status byte is set.

Instruction Reference

Micromega Corporation 63 uM-FPU64 Instruction Set - Release 411

if reg[A] is 32-bit, status = floatStatus(reg[A] - reg[0])
if reg[A] is 64-bit, status = floatStatus(reg[A] - reg[128])

Opcode: 31

 The status byte can be read with the READSTATUS instruction. It is set as follows:

1 - - - - S

7 6 5 4 3 2 1 0Bit

N Z
Bit 2 Not-a-Number Set if either value is not a valid number
Bit 1 Sign Set if reg[A] < reg[0 | 128]
Bit 0 Zero Set if reg[A] = reg[0 | 128]

If neither Bit 0 or Bit 1 is set, reg[A] > reg[0 | 128]

See Also: FCMP, FCMPI, FCMP2, LCMP, LCMPI, LCMP0, LCMP2, LUCMP, LUCMPI,
LUCMP0, LUCMP2

FCMP2 Floating point compare

Syntax: FCMP2,register1,register2

Description: Compares the floating point value in register1 with the value in register2 and sets the internal
status byte.

status = floatStatus(reg[register1] - reg[register2])

The status byte can be read with the READSTATUS instruction. It is set as follows:

1 - - - - S

7 6 5 4 3 2 1 0Bit

N Z
Bit 2 Not-a-Number Set if either value is not a valid number
Bit 1 Sign Set if reg[register2] < reg[register1]
Bit 0 Zero Set if reg[register2] = reg[register1]

If neither Bit 0 or Bit 1 is set, reg[register2] > reg[register1]
Opcode: 3D

Byte 2: register1
Register number (0 to 255).

Byte 3: register2
Register number (0 to 255).

Special Cases: • if register1 is 32-bit and register2 is 64-bit, the value is converted to 32-bit before being used
• if register1 is 64-bit and register2 is 32-bit, the value is converted to 64-bit before being used

See Also: FCMP, FCMPI, FCMP0, LCMP, LCMPI, LCMP0, LCMP2, LUCMP, LUCMPI,
LUCMP0, LUCMP2

FCNV Floating point conversion

Instruction Reference

Micromega Corporation 64 uM-FPU64 Instruction Set - Release 411

Syntax: FCNV,conversion

Description: Convert the value in register A using the conversion specified and store the result in register A. If
register A is 32-bit, the conversion uses 32-bit constants. If register A is 64-bit, the conversion uses
64-bit constants.

reg[A] = the converted value of reg[A]

Opcode: 56

Byte 2: conversion
The conversion codes are as follows:

Value IDE Symbol IDE Value Description
0 F_C 00 Fahrenheit to Celsius
1 C_F 01 Celsius to Fahrenheit
2 IN_MM 02 inches to millimeters
3 MM_IN 03 millimeters to inches
4 IN_CM 04 inches to centimeters
5 CM_IN 05 centimeters to inches
6 IN_M 06 inches to meters
7 M_IN 07 meters to inches
8 FT_M 08 feet to meters
9 M_FT 09 meters to feet

10 YD_M 0A yards to meters
11 M_YD 0B meters to yards
12 MILES_KM 0C miles to kilometers
13 KM_MILES 0D kilometers to miles
14 NM_M 0E nautical miles to meters
15 M_NM 0F meters to nautical miles
16 ACRES_M2 10 acres to meters2
17 M2_ACRES 11 meters 2 to acres
18 OZ_G 12 ounces to grams
19 G_OZ 13 grams to ounces
20 LB_KG 14 pounds to kilograms
21 KG_LB 15 kilograms to pounds
22 USGAL_L 16 US gallons to liters
23 L_USGAL 17 liters to US gallons
24 UKGAL_L 18 UK gallons to liters
25 L_UKGAL 19 liters to UK gallons
26 USOZ_ML 1A US fluid ounces to milliliters
27 ML_USOZ 1B milliliters to US fluid ounces
28 UKOZ_ML 1C UK fluid ounces to milliliters
29 ML_UKOZ 1D milliliters to UK fluid ounces
30 CAL_J 1E calories to Joules
31 J_CAL 1F Joules to calories
32 HP_W 20 horsepower to watts
33 W_HP 21 watts to horsepower
34 ATM_KP 22 atmospheres to kilopascals

Instruction Reference

Micromega Corporation 65 uM-FPU64 Instruction Set - Release 411

35 KP_ATM 23 kilopascals to atmospheres
36 MMHG_KP 24 mmHg to kilopascals
37 KP_MMHG 25 kilopascals to mmHg
38 DEG_RAD 26 degrees to radians
39 RAD_DEG 27 radians to degrees

Special Cases: • if conversion greater than 39, the value of register A is unchanged.

Examples: FCNV, C_F Converts the value in register A from celsius to fahrenheit.
FCNV, IN_CM Converts the value in register A from inches to centimeters.

FCOPYI Copy Immediate value

Syntax: FCOPYI,signedByte,register

Description: The 8-bit signed value is converted to a long integer and copied to register.

reg[register] = float(signedByte), status = longStatus(reg[register])

Opcode: 5F

Byte 2: signedByte
An signed byte value (-128 to 127).

Byte 3: register
Register number (0 to 255).

See Also: LCOPYI, COPY0, COPYA, COPYX

FDIV Floating point divide

Syntax: FDIV,register

Description: The floating point value in register A is divided by the floating point value in register.

reg[A] = reg[A] / reg[register]

Opcode: 25

Byte 2: register
Register number (0 to 255).

Special Cases: • if reg[A] is 32-bit and register is 64-bit, the value is converted to 32-bit before being used
• if reg[A] is 64-bit and register is 32-bit, the value is converted to 64-bit before being used
• if either value is NaN, then the result is NaN
• if both values are zero or both values are infinity, then the result is NaN
• if reg[register] is zero and reg[A] is not zero, then the result is infinity
• if reg[register] is infinity, then the result is zero

See Also: FDIVI, FDIV0, FDIVR, FDIVRI, FDIVR0, FMOD, LDIV, LDIVI, LDIV0,

Instruction Reference

Micromega Corporation 66 uM-FPU64 Instruction Set - Release 411

LUDIV, LUDIVI, LUDIV0

FDIVI Floating point divide by immediate value

Syntax: FDIVI,signedByte

Description: The signed byte value is converted to floating point and the value in register A is divided by the
converted value.

reg[A] = reg[A] / float(signedByte)

Opcode: 37

Byte 2: signedByte
A signed byte value (-128 to 127).

Special Cases: • if reg[A] is NaN, then the result is NaN
• if both values are zero, then the result is NaN
• if the signedByte is zero and reg[A] is not zero, then the result is infinity

See Also: FDIV, FDIV0, FDIVR, FDIVRI, FDIVR0, FMOD, LDIV, LDIVI, LDIV0,
LUDIV, LUDIVI, LUDIV0

FDIV0 Floating point divide by register 0

Syntax: FDIV0

Description: If register A is 32-bit, the floating point value in register A is divided by the value in register 0. If
register A is 64-bit, the floating point value in register A is divided by the value in register 128.

if reg[A] is 32-bit, reg[A] = reg[A] / reg[0]
if reg[A] is 64-bit, reg[A] = reg[A] / reg[128]

Opcode: 2E

Special Cases: • if either value is NaN, then the result is NaN
• if both values are zero or both values are infinity, then the result is NaN
• if reg[0 | 128] is zero and reg[A] is not zero, then the result is infinity
• if reg[0 | 128] is infinity, then the result is zero

See Also: FDIV, FDIVI, FDIVR, FDIVRI, FDIVR0, FMOD, LDIV, LDIVI, LDIV0,
LUDIV, LUDIVI, LUDIV0

FDIVR Floating point divide (reversed)

Syntax: FDIVR,register

Description: The floating point value in register is divided by the floating point value in register A and the
result is stored in register A.

reg[A] = reg[register] / reg[A]

Instruction Reference

Micromega Corporation 67 uM-FPU64 Instruction Set - Release 411

Opcode: 26

Byte 2: register
Register number (0 to 255).

Special Cases: • if reg[A] is 32-bit and register is 64-bit, the value is converted to 32-bit before being used
• if reg[A] is 64-bit and register is 32-bit, the value is converted to 64-bit before being used
• if either value is NaN, then the result is NaN
• if both values are zero or both values are infinity, then the result is NaN
• if reg[A] is zero and reg[register] is not zero, then the result is infinity
• if reg[A] is infinity, then the result is zero

See Also: FDIV, FDIVI, FDIV0, FDIVRI, FDIVR0, FMOD, LDIV, LDIVI, LDIV0,
LUDIV, LUDIVI, LUDIV0

FDIVRI Floating point divide by immediate value (reversed)

Syntax: FDIVRI,signedByte

Description: The signed byte value is converted to floating point and divided by the value in register A. The
result is stored in register A.

reg[A] = float(signedByte) / reg[A]

Opcode: 38

Byte 2: signedByte
A signed byte value (-128 to 127).

Special Cases: • if reg[A] is NaN, then the result is NaN
• if both values are zero, then the result is NaN
• if the value reg[A] is zero and float(signedByte) is not zero, then the result is infinity

See Also: FDIV, FDIVI, FDIV0, FDIVR, FDIVR0, FMOD, LDIV, LDIVI, LDIV0,
LUDIV, LUDIVI, LUDIV0

FDIVR0 Floating point divide register 0 (reversed)

Syntax: FDIVR0

Description: If register A is 32-bit, the floating point value in register 0 is divided by the floating point value in
register A and the result is stored in register A. If register A is 64-bit, the floating point value in
register 128 is divided by the floating point value in register A and the result is stored in register A.

if reg[A] is 32-bit, reg[A] = reg[0] / reg[A]
if reg[A] is 64-bit, reg[A] = reg[128] / reg[A]

Opcode: 2F

Special Cases: • if either value is NaN, then the result is NaN

Instruction Reference

Micromega Corporation 68 uM-FPU64 Instruction Set - Release 411

• if both values are zero or both values are infinity, then the result is NaN
• if reg[A] is zero and reg[0 | 128] is not zero, then the result is infinity
• if reg[A] is infinity, then the result is zero

See Also: FDIV, FDIVI, FDIV0, FDIVR, FDIVRI, FMOD, LDIV, LDIVI, LDIV0,
LUDIV, LUDIVI, LUDIV0

FFT Fast Fourier Transform

Syntax: FFT,action

Description: This instruction performs Fast Fourier Transform (FFT) operations.

Opcode: 6F

Byte 2: action

The type of action performed is specified by the action byte as follows:

Value IDE Symbol IDE Value Description
0 FIRST_STAGE 0x00 first stage of FFT
1 NEXT_STAGE 0x01 next stage of multistage FFT
2 NEXT_LEVEL 0x02 next level of multistage FFT
3 NEXT_BLOCK 0x03 next block of multistage FFT

+4 BIT_REVERSE 0x04 pre-processing bit reverse sort
+8 PRE_ADJUST 0x08 pre-processing for inverse FFT

+16 POST_ADJUST 0x10 post-processing for inverse FFT

The data for the FFT instruction must be 32-bit floating point values stored in matrix A as a Nx2
matrix, where N must be a power of two. The data points are specified as complex numbers, with
the real part stored in the first column and the imaginary part stored in the second column. If all
data points can be stored in the matrix the Fast Fourier Transform can be calculated with a single
instruction. If more data points are required than will fit in the matrix, the calculation must be done
in blocks. The algorithm iteratively writes the next block of data, executes the FFT instruction for
the appropriate stage of the FFT calculation, and reads the data back to the microcontroller. This
proceeds in stages until all data points have been processed. See application notes for more details.

 If the matrix is stored in registers, the maximum matrix size is 64 points (if all 128 32-bit registers
are used). If the matrix is stored in RAM, then maximum matrix size is 256 points.

See Also: COPYIND, LOADIND, LOADMA, SAVEIND, SAVEMA, SELECTMA

FINV Floating point inverse

Syntax: FINV

Description: The inverse of the floating point value in register A is stored in register A.

reg[A] = 1 / reg[A]

Opcode: 40

Instruction Reference

Micromega Corporation 69 uM-FPU64 Instruction Set - Release 411

Special Cases: • if reg[A] is NaN, then the result is NaN
• if reg[A] is zero, then the result is infinity
• if reg[A] is infinity, then the result is zero

See Also: FDIV, FDIVI, FDIV0, FDIVR, FDIVRI, FDIVR0

FIX Convert floating point to long integer

Syntax: FIX

Description: Converts the floating point value in register A to a long integer value.

reg[A] = fix(reg[A])

Opcode: 61

Special Cases: • if reg[A] is NaN, then the result is zero
• if reg[A] is +infinity or greater than the maximum signed long integer, then the result is the
maximum signed long integer (decimal: 2147483647, hex: $7FFFFFFF)
• if reg[A] is –infinity or less than the minimum signed long integer, then the result is the
minimum signed long integer (decimal: -2147483648, hex: $80000000)

See Also: FIXR, FLOAT, FRAC, FSPLIT

FIXR Convert floating point to long integer with rounding

Syntax: FIXR

Description: Converts the floating point value in register A to a long integer value with rounding.

reg[A] = fix(round(reg[A]))

Opcode: 62

Special Cases: • if reg[A] is NaN, then the result is zero
• if reg[A] is +infinity or greater than the maximum signed long integer, then the result is the
maximum signed long integer (decimal: 2147483647, hex: $7FFFFFFF)
• if reg[A] is –infinity or less than the minimum signed long integer, then the result is the
minimum signed long integer (decimal: -2147483648, hex: $80000000)

See Also: FIX, FLOAT, FRAC, FSPLIT

FLOAT Convert long integer to floating point

Syntax: FLOAT

Description: Converts the long integer value in register A to a floating point value.

reg[A] = float(reg[A])

Instruction Reference

Micromega Corporation 70 uM-FPU64 Instruction Set - Release 411

Opcode: 60

See Also: FIX, FIXR, FRAC, FSPLIT

FLOOR Floor

Syntax: FLOOR

Description: Calculates the floating point value equal to the nearest integer that is less than or equal to the
floating point value in register A. The result is stored in register A.

reg[A] = floor(reg[A])

Opcode: 51

Special Cases: • if reg[A] is NaN, then the result is NaN
• if reg[A] is +infinity or -infinity, then the result is +infinity or -infinity
• if reg[A] is 0.0 or –0.0, then the result is 0.0 or –0.0

See Also: CEIL, ROUND

FMAC Multiply and add

Syntax: FMAC,register1,register2

Description: The floating point value in register1 is multiplied by the value in register2 and the result is added
to register A.

reg[A] = reg[A] + (reg[register1] * reg[register2])

Opcode: 57

Byte 2: register1
Register number (0 to 255).

Byte 3: register2
Register number (0 to 255).

Special Cases: • if reg[A] is 32-bit and register1 or register2 are 64-bit, the values are converted to 32-bit before
being used
• if reg[A] is 64-bit and register1 or register2 are 32-bit, the values are converted to 64-bit before
being used
• if either value is NaN, or one value is zero and the other is infinity, then the result is NaN
• if either values is infinity and the other is nonzero, then the result is infinity

See Also: FMSC

FMAX Floating point maximum

Instruction Reference

Micromega Corporation 71 uM-FPU64 Instruction Set - Release 411

Syntax: FMAX,register

Description: The maximum floating point value of register A and register is stored in register A.

reg[A] = max(reg[A], reg[register])

Opcode: 55

Byte 2: register
Register number (0 to 255).

Special Cases: • if reg[A] is 32-bit and register is 64-bit, the value is converted to 32-bit before being used
• if reg[A] is 64-bit and register is 32-bit, the value is converted to 64-bit before being used
• if either value is NaN, then the result is NaN

See Also: FMIN, LMAX, LMIN

FMIN Floating point minimum

Syntax: FMIN,register

Description: The minimum floating point value of register A and register is stored in register A.

reg[A] = min(reg[A], reg[register])

Opcode: 54

Byte 2: register
Register number (0 to 255).

Special Cases: • if reg[A] is 32-bit and register is 64-bit, the value is converted to 32-bit before being used
• if reg[A] is 64-bit and register is 32-bit, the value is converted to 64-bit before being used
• if either value is NaN, then the result is NaN

See Also: FMAX, LMAX, LMIN

FMOD Floating point remainder

Syntax: FMOD,register

Description: The floating point remainder of the floating point value in register A divided by register is stored
in register A.

reg[A] = remainder of reg[A] / (reg[register]

Opcode: 50

Byte 2: register
Register number (0 to 255).

Instruction Reference

Micromega Corporation 72 uM-FPU64 Instruction Set - Release 411

Special Cases: • if reg[A] is 32-bit and register is 64-bit, the value is converted to 32-bit before being used
• if reg[A] is 64-bit and register is 32-bit, the value is converted to 64-bit before being used

See Also: FDIV, FDIVI, FDIV0, FDIVR, FDIVRI, FDIVR0, LDIV, LDIVI, LDIV0,
LUDIV, LUDIVI, LUDIV0

FMSC Multiply and subtract from

Syntax: FMSC,register1,register2

Description: The floating point value in register1 is multiplied by the value in register2 and the result is
subtracted from register A.

reg[A] = reg[A] - (reg[register1] * reg[register2])

Opcode: 58

Byte 2: register1
Register number (0 to 255).

Byte 3: register2
Register number (0 to 255).

Special Cases: • if reg[A] is 32-bit and register1 or register2 are 64-bit, the values are converted to 32-bit before
being used
• if reg[A] is 64-bit and register1 or register2 are 32-bit, the values are converted to 64-bit before
being used
• if either value is NaN, or one value is zero and the other is infinity, then the result is NaN
• if either values is infinity and the other is nonzero, then the result is infinity

See Also: FMAC

FMUL Floating point multiply

Syntax: FMUL,register

Description: The floating point value in register A is multiplied by the value in register.

reg[A] = reg[A] * reg[register]

Opcode: 24

Byte 2: register
Register number (0 to 255).

Special Cases: • if reg[A] is 32-bit and register is 64-bit, the value is converted to 32-bit before being used
• if reg[A] is 64-bit and register is 32-bit, the value is converted to 64-bit before being used
• if either value is NaN, or one value is zero and the other is infinity, then the result is NaN

Instruction Reference

Micromega Corporation 73 uM-FPU64 Instruction Set - Release 411

• if either values is infinity and the other is nonzero, then the result is infinity

See Also: FMULI, FMUL0, LMUL, LMULI, LMUL0

FMULI Floating point multiply by immediate value

Syntax: FMULI,signedByte

Description: The signed byte value is converted to floating point and the value in register A is multiplied by the
converted value.

reg[A] = reg[A] * float[signedByte]

Opcode: 36

Byte 2: signedByte
A signed byte value (-128 to 127).

Special Cases: • if reg[A] is NaN, then the result is NaN
• if the signed byte is zero and reg[A] is infinity, then the result is NaN

See Also: FMUL, FMUL0, LMUL, LMULI, LMUL0

FMUL0 Floating point multiply by register 0

Syntax: FMUL0

Description: If register A is 32-bit, the floating point value in register A is multiplied by the value in register 0.
If register A is 64-bit, the floating point value in register A is multiplied by the value in register
128. The result is stored in register A.

if reg[A] is 32-bit, reg[A] = reg[A] * reg[0]
if reg[A] is 64-bit, reg[A] = reg[A] * reg[128]

Opcode: 2D

Special Cases: • if either value is NaN, or one value is zero and the other is infinity, then the result is NaN
• if either values is infinity and the other is nonzero, then the result is infinity

See Also: FMUL, FMULI, LMUL, LMULI, LMUL0

FNEG Floating point negate

Syntax: FNEG

Opcode: 3E

Description: reg[A] = -reg[A]

The negative of the floating point value in register A is stored in register A.

Instruction Reference

Micromega Corporation 74 uM-FPU64 Instruction Set - Release 411

Special Cases: • if the value is NaN, then the result is NaN

See Also: FABS, LABS, LNEG

FPOW Floating point power

Syntax: FPOW,register

Description: The floating point value in register A is raised to the power of the floating point value in register
and stored in register A.

reg[A] = reg[A] ** reg[register]

Opcode: 27

Byte 2: register
Register number (0 to 255).

Special Cases: • if reg[A] is 32-bit and register is 64-bit, the value is converted to 32-bit before being used
• if reg[A] is 64-bit and register is 32-bit, the value is converted to 64-bit before being used
• if reg[register] is 0.0 or –0.0, then the result is 1.0
• if reg[register] is 1.0, then the result is the same as the A value
• if reg[register] is NaN, then the result is Nan
• if reg[A] is NaN and reg[register] is nonzero, then the result is NaN
• if | reg[A] | > 1 and reg[register] is +infinite, then the result is +infinity
• if | reg[A] | < 1 and reg[register] is -infinite, then the result is +infinity
• if | reg[A] | > 1 and reg[register] is -infinite, then the result is 0.0
• if | reg[A] | < 1 and reg[register] is +infinite, then the result is 0.0
• if | reg[A] | = 1 and reg[register] is infinite, then the result is NaN
• if reg[A] is 0.0 and reg[register] > 0, then the result is 0.0
• if reg[A] is +infinity and reg[register] < 0, then the result is 0.0
• if reg[A] is 0.0 and reg[register] < 0, then the result is +infinity
• if reg[A] is +infinity and reg[register] > 0, then the result is +infinity
• if reg[A] is -0.0 and reg[register] > 0 but not a finite odd integer, then the result is 0.0
• if the reg[A] is -infinity and reg[register] < 0 but not a finite odd integer, then the result is 0.0
• if reg[A] is -0.0 and the reg[register] is a positive finite odd integer, then the result is –0.0
• if reg[A] is -infinity and reg[register] is a negative finite odd integer, then the result is –0.0
• if reg[A] is -0.0 and reg[register] < 0 but not a finite odd integer, then the result is +infinity
• if reg[A] is -infinity and reg[register] > 0 but not a finite odd integer,
 then the result is +infinity
• if reg[A] is -0.0 and reg[register] is a negative finite odd integer, then the result is –infinity
• if reg[A] is -infinity and reg[register] is a positive finite odd integer,
 then the result is –infinity
• if reg[A] < 0 and reg[register] is a finite even integer,
then the result is equal to | reg[A] | to the power of reg[register]
• if reg[A] < 0 and reg[register] is a finite odd integer,
then the result is equal to the negative of | reg[A] | to the power of reg[register]
• if reg[A] < 0 and finite and reg[register] is finite and not an integer, then the result is NaN

Instruction Reference

Micromega Corporation 75 uM-FPU64 Instruction Set - Release 411

See Also: FPOWI, FPOW0, EXP, EXP10, LOG, LOG10, ROOT, SQRT

FPOWI Floating point power by immediate value

Syntax: FPOWI,signedByte

Description: The signed byte value is converted to floating point and the floating point value in register A is
raised to the power of the converted value and stored in register A.

reg[A] = reg[A] ** float[signedByte]

Opcode: 39

Byte 2: signedByte
A signed byte value (-128 to 127).

Special Cases: • if signedByte is 0, then the result is 1.0
• if signedByte is 1, then the result is the same as the A value
• if reg[A] is NaN and signedByte is nonzero, then the result is NaN
• if reg[A] is 0.0 and signedByte > 0, then the result is 0.0
• if reg[A] is +infinity and signedByte < 0, then the result is 0.0
• if reg[A] is 0.0 and signedByte < 0, then the result is +infinity
• if reg[A] is +infinity and signedByte > 0, then the result is +infinity
• if reg[A] is -0.0 and signedByte > 0 but not an odd integer, then the result is 0.0
• if the reg[A] is -infinity and signedByte < 0 but not an odd integer, then the result is 0.0
• if reg[A] is -0.0 and signedByte is a positive odd integer, then the result is –0.0
• if reg[A] is -infinity and signedByte is a negative odd integer, then the result is –0.0
• if reg[A] is -0.0 and signedByte < 0 but not an odd integer, then the result is +infinity
• if reg[A] is -infinity and signedByte > 0 but not an odd integer, then the result is +infinity
• if reg[A] is -0.0 and signedByte is a negative odd integer, then the result is –infinity
• if reg[A] is -infinity and signedByte is a positive odd integer, then the result is –infinity
• if reg[A] < 0 and signedByte is an even integer,

then the result is equal to | reg[A] | to the power of signedByte
• if reg[A] < 0 and signedByte is an odd integer,

then the result is equal to the negative of | reg[A] | to the power of signedByte

See Also: FPOW, FPOW0, EXP, EXP10, LOG, LOG10, ROOT, SQRT

FPOW0 Floating point power by register 0

Syntax: FPOW0

Description: If register A is 32-bit, the floating point value in register A is raised to the power of the floating
point value in register 0 and stored in register A. If register A is 64-bit, the floating point value in
register A is raised to the power of the floating point value in register 128 and stored in register A.

if reg[A] is 32-bit, reg[A] = reg[A] ** reg[0]
if reg[A] is 64-bit, reg[A] = reg[A] ** reg[128]

Opcode: 30

Instruction Reference

Micromega Corporation 76 uM-FPU64 Instruction Set - Release 411

Special Cases: • if reg[0 | 128] is 0.0 or –0.0, then the result is 1.0
• if reg[0 | 128] is 1.0, then the result is the same as the A value
• if reg[0 | 128] is NaN, then the result is Nan
• if reg[A] is NaN and reg[0 | 128] is nonzero, then the result is NaN
• if | reg[A] | > 1 and reg[0 | 128] is +infinite, then the result is +infinity
• if | reg[A] | < 1 and reg[0 | 128] is -infinite, then the result is +infinity
• if | reg[A] | > 1 and reg[0 | 128] is -infinite, then the result is 0.0
• if | reg[A] | < 1 and reg[0 | 128] is +infinite, then the result is 0.0
• if | reg[A] | = 1 and reg[0 | 128] is infinite, then the result is NaN
• if reg[A] is 0.0 and reg[0 | 128] > 0, then the result is 0.0
• if reg[A] is +infinity and reg[0 | 128] < 0, then the result is 0.0
• if reg[A] is 0.0 and reg[0 | 128] < 0, then the result is +infinity
• if reg[A] is +infinity and reg[0 | 128] > 0, then the result is +infinity
• if reg[A] is -0.0 and reg[0 | 128] > 0 but not a finite odd integer, then the result is 0.0
• if the reg[A] is -infinity and reg[0 | 128] < 0 but not a finite odd integer, then the result is 0.0
• if reg[A] is -0.0 and the reg[0 | 128] is a positive finite odd integer, then the result is –0.0
• if reg[A] is -infinity and reg[0 | 128] is a negative finite odd integer, then the result is –0.0
• if reg[A] is -0.0 and reg[0 | 128] < 0 but not a finite odd integer, then the result is +infinity
• if reg[A] is -infinity and reg[0 | 128] > 0 but not a finite odd integer,
 then the result is +infinity
• if reg[A] is -0.0 and reg[0 | 128] is a negative finite odd integer, then the result is –infinity
• if reg[A] is -infinity and reg[0 | 128] is a positive finite odd integer,
 then the result is –infinity
• if reg[A] < 0 and reg[0 | 128] is a finite even integer,
then the result is equal to | reg[A] | to the power of reg[0 | 128]
• if reg[A] < 0 and reg[0 | 128] is a finite odd integer,
then the result is equal to the negative of | reg[A] | to the power of reg[0 | 128]
• if reg[A] < 0 and finite and reg[0 | 128] is finite and not an integer, then the result is NaN

See Also: FPOW, FPOWI, EXP, EXP10, LOG, LOG10, ROOT, SQRT

FRAC Get fractional part of floating point value

Syntax: FRAC

Description: Register A is loaded with the fractional part the floating point value in register A. The sign of the
fraction is the same as the sign of the original value.

Opcode: 63

Special Cases: • if reg[A] is NaN or infinity, then the result is NaN

See Also: FLOAT, FIX, FIXR, FSPLIT

FREAD Read floating point value

Syntax: FREAD,register
Return: float32Value

Instruction Reference

Micromega Corporation 77 uM-FPU64 Instruction Set - Release 411

Description: The floating point value of register is returned. The four bytes of the 32-bit floating point value
must be read immediately following this instruction.

Return 32-bit floating point value from reg[register]

Opcode: 1A

Byte 2: register
Register number (0 to 255).

Return: float32Value
Four bytes representing a 32-bit floating point value (MSB first).

Special Cases: • if register is 64-bit, the value is converted to 32-bit before being sent.
• if PIC mode is selected, the value is converted to PIC format before being sent.

See Also: SETREAD, FREAD0, FREADA, FREADX, LREAD, LREAD0, LREADA, LREADX,
LREADBYTE, LREADWORD, DREAD, RDIND

FREADA Read floating point value from register A

Syntax: FREADA
Return: float32Value

Description: The floating point value of register A is returned. The four bytes of the 32-bit floating point value
must be read immediately following this instruction.

Return 32-bit floating point value from reg[A]

Opcode: 1B

Return: float32Value
Four bytes representing the 32-bit floating point value (MSB first).

Special Cases: • if reg[A] is 64-bit, the value is converted to 32-bit before being sent.
• if PIC mode is selected, the value is converted to PIC format before being sent.

See Also: SETREAD, FREAD, FREAD0, FREADX, LREAD, LREAD0, LREADA, LREADX,
LREADBYTE, LREADWORD, DREAD, RDIND

FREADX Read floating point value from register X

Syntax: FREADX
Return: float32Value

Description: The floating point value from register X is returned, and X is incremented to the next register. The
four bytes of the 32-bit floating point value must be read immediately following this instruction.

Return 32-bit value floating point from reg[X], X = X + 1

Instruction Reference

Micromega Corporation 78 uM-FPU64 Instruction Set - Release 411

Opcode: 1C

Return: float32Value
Four bytes representing the 32-bit floating point value (MSB first).

Special Cases: • if reg[X] is 64-bit, the value is converted to 32-bit before being sent.
• if PIC mode is selected, the value is converted to PIC format before being sent.

See Also: SETREAD, FREAD, FREAD0, FREADA, LREAD, LREAD0, LREADA, LREADX,
LREADBYTE, LREADWORD, DREAD, RDIND

FREAD0 Read floating point value from register 0

Syntax: FREAD0
Return: float32Value

Description: If register A is 32-bit, the floating point value from register 0 is returned. If register A is 64-bit, the
floating point value from register 128 is returned. The four bytes of the 32-bit floating point value
must be read immediately following this instruction.

if reg[A] is 32-bit, return 32-bit floating point value from reg[0]
if reg[A] is 64-bit, convert 64-bit value from reg[128] and return 32-bit floating point value

Opcode: 1D

Return: float32Value
Four bytes representing the 32-bit floating point value (MSB first).

Special Cases: • if reg[A] is 64-bit, the value is converted to 32-bit before being sent.
• if PIC mode is selected, the value is converted to PIC format before being sent.

See Also: SETREAD, FREAD, FREADA, FREADX, LREAD, LREAD0, LREADA, LREADX,
LREADBYTE, LREADWORD, DREAD, RDIND

FSET Set register A

Syntax: FSET,register

Description: Set register A to the value of register.

if reg[A] = reg[register]

Opcode: 20

Byte 2: register
Register number (0 to 255).

Special Cases: • if reg[A] is 32-bit and register is 64-bit, the value is converted to 32-bit before being used
• if reg[A] is 64-bit and register is 32-bit, the value is converted to 64-bit before being used

Instruction Reference

Micromega Corporation 79 uM-FPU64 Instruction Set - Release 411

See Also: FSETI, FSET0, LSET, LSETI, LSET0

FSETI Set register from immediate value

Syntax: FSETI,signedByte

Description: The signed byte value is converted to floating point and stored in register A.

reg[A] = float(signedByte)

Opcode: 32

Byte 2: signedByte
A signed byte value (-128 to 127).

See Also: FSET, FSET0, LSET, LSETI, LSET0

FSET0 Set register A from register 0

Syntax: FSET0

Description: If register A is 32-bit, it is set to the value of register 0. If register A is 64-bit, it is set to the value
of register 128.

if reg[A] is 32-bit, reg[A] = reg[0]
if reg[A] is 64-bit, reg[A] = reg[128]

Opcode: 29

See Also: FSET, FSETI, LSET, LSETI, LSET0

FSPLIT Split integer and fractional portions of floating point value

Syntax: FSPLIT

Description: The integer portion of the original value in register A is stored in register A. If register A is 32-bit,
the fractional portion of the original value is stored in register 0. If register A is 64-bit, the
fractional portion of the original value is stored in register 128. Both values are stored as floating
point values.

reg[A] = float(integer portion of reg[A])
if reg[A] is 32-bit, reg[0] = fractional portion of reg[A]
if reg[A] is 64-bit, reg[128] = fractional portion of reg[A]

Opcode: 64

Special Cases: • if reg[A] is NaN or Infinity, reg[A] is set to zero
• if reg[A] is NaN or Infinity, reg[0 | 128] is set to NaN

Instruction Reference

Micromega Corporation 80 uM-FPU64 Instruction Set - Release 411

See Also: FLOAT, FIX, FIXR, FRAC

FSTATUS Get floating point status

Syntax: FSTATUS,register

Description: Set the internal status byte to the floating point status of the value in register. The status byte can
be used directly by instructions in user-defined functions, or read by the microcontroller with the
READSTATUS instruction. It is set as follows:

1 - - - I S

7 6 5 4 3 2 1 0Bit

N Z

Bit 3 Infinity Set if the value is an infinity
Bit 2 Not-a-Number Set if the value is not a valid number
Bit 1 Sign Set if the value is negative
Bit 0 Zero Set if the value is zero

status = floatstatus(reg[register])

Opcode: 3B

Byte 2: register
Register number (0 to 255).

See Also: FSTATUSA, LSTATUS, LSTATUSA, READSTATUS

FSTATUSA Get floating point status of register A

Syntax: FSTATUSA

Description: Set the internal status byte to the floating point status of the value in register A. The status byte can
be used directly by instructions in user-defined functions, or read by the microcontroller with the
READSTATUS instruction. It is set as follows:

1 - - - I S

7 6 5 4 3 2 1 0Bit

N Z
Bit 3 Infinity Set if the value is an infinity
Bit 2 Not-a-Number Set if the value is not a valid number
Bit 1 Sign Set if the value is negative
Bit 0 Zero Set if the value is zero

status = floatstatus(reg[A])

Opcode: 3C

See Also: FSTATUS, LSTATUS, LSTATUSA, READSTATUS

FSUB Floating point subtract

Syntax: FSUB,register

Instruction Reference

Micromega Corporation 81 uM-FPU64 Instruction Set - Release 411

Description: The floating point value in register is subtracted from the value in register A.

reg[A] = reg[A] - reg[register]

Opcode: 22

Byte 2: register
Register number (0 to 255).

Special Cases: • if reg[A] is 32-bit and register is 64-bit, the value is converted to 32-bit before being used
• if reg[A] is 64-bit and register is 32-bit, the value is converted to 64-bit before being used
• if either value is NaN, then the result is NaN
• if both values are infinity and the same sign, then the result is NaN
• if reg[A] is +infinity and reg[register] is not +infinity, then the result is +infinity
• if reg[A] is -infinity and reg[register] is not -infinity, then the result is -infinity
• if reg[A] is not an infinity and reg[register] is an infinity, then the result is an infinity of the
opposite sign as reg[register]

See Also: FSUBI, FSUB0, FSUBR, FSUBRI, FSUBR0, LSUB, LSUBI, LSUB0

FSUBI Floating point subtract immediate value

Syntax: FSUBI,signedByte

Description: The signed byte value is converted to floating point and subtracted from the value in register A.

reg[A] = reg[A] - float[signedByte]

Opcode: 34

Byte 2: signedByte
A signed byte value (-128 to 127).

Special Cases: • if reg[A] is NaN, then the result is NaN
• if reg[A] is +infinity, then the result is +infinity
• if reg[A] is -infinity, then the result is -infinity

See Also: FSUB, FSUB0, FSUBR, FSUBRI, FSUBR0, LSUB, LSUBI, LSUB0

FSUB0 Floating point subtract register 0

Syntax: FSUB0

Description: If register A is 32-bit, the floating point value in register 0 is subtracted from the value in register
A. If register A is 64-bit, the floating point value in register 128 is subtracted from the value in
register A.

if reg[A] is 32-bit, reg[A] = reg[A] - reg[0]
if reg[A] is 64-bit, reg[A] = reg[A] - reg[128]

Instruction Reference

Micromega Corporation 82 uM-FPU64 Instruction Set - Release 411

Opcode: 2B

Special Cases: • if either value is NaN, then the result is NaN
• if both values are infinity and the same sign, then the result is NaN
• if reg[A] is +infinity and reg[0 | 128] is not +infinity, then the result is +infinity
• if reg[A] is -infinity and reg[0 | 128] is not -infinity, then the result is -infinity
• if reg[A] is not an infinity and reg[0 | 128] is an infinity, then the result is an infinity of the
opposite sign as reg[0 | 128]

See Also: FSUB, FSUBI, FSUBR, FSUBRI, FSUBR0, LSUB, LSUBI, LSUB0

FSUBR Floating point subtract (reversed)

Syntax: FSUBR,register

Description: The floating point value in register A is subtracted from the value in register and the result is
stored in register A.

reg[A] = reg[register] - reg[A]

Opcode: 23

Byte 2: register
Register number (0 to 255).

Special Cases: • if reg[A] is 32-bit and register is 64-bit, the value is converted to 32-bit before being used
• if reg[A] is 64-bit and register is 32-bit, the value is converted to 64-bit before being used
• if either value is NaN, then the result is NaN
• if both values are infinity and the same sign, then the result is NaN
• if reg[register] is +infinity and reg[A] is not +infinity, then the result is +infinity
• if reg[register] is -infinity and reg[A] is not -infinity, then the result is -infinity
• if reg[register] is not an infinity and reg[A] is an infinity, then the result is an infinity of the
opposite sign as reg[A]

See Also: FSUB, FSUBI, FSUB0, FSUBRI, FSUBR0, LSUB, LSUBI, LSUB0

FSUBRI Floating point subtract immediate value (reversed)

Syntax: FSUBRI,signedByte

Description: The signed byte value is converted to floating point and the value in register A is subtracted from
the converted value. The result is stored in register A.

reg[A] = float[signedByte] - reg[A]

Opcode: 35

Byte 2: signedByte
A signed byte value (-128 to 127).

Instruction Reference

Micromega Corporation 83 uM-FPU64 Instruction Set - Release 411

Special Cases: • if reg[A] is NaN, then the result is NaN
• if reg[A] is +infinity, then the result is +infinity
• if reg[A] is -infinity, then the result is -infinity

See Also: FSUB, FSUBI, FSUB0, FSUBR, FSUBR0, LSUB, LSUBI, LSUB0

FSUBR0 Floating point subtract register 0 (reversed)

Syntax: FSUBR0

Description: If register A is 32-bit, the floating point value in register A is subtracted from the value in register
0, and the result is stored in register A. If register A is 64-bit, the floating point value in register A
is subtracted from the value in register 128, and the result is stored in register A.

if reg[A] is 32-bit, reg[A] = reg[0] - reg[A]
if reg[A] is 64-bit, reg[A] = reg[128] - reg[A]

Opcode: 2C

Special Cases: • if either value is NaN, then the result is NaN
• if both values are infinity and the same sign, then the result is NaN
• if reg[register] is +infinity and reg[0 | 128] is not +infinity, then the result is +infinity
• if reg[register] is -infinity and reg[A] is not -infinity, then the result is -infinity
• if reg[register] is not an infinity and reg[A] is an infinity, then the result is an infinity of the
opposite sign as reg[A]

See Also: FSUB, FSUBI, FSUB0, FSUBR, FSUBRI, LSUB, LSUBI, LSUB0

FTABLE Floating point reverse table lookup

Syntax: FTABLE,conditionCode,tableSize,tableItem1..tableItemN

Description: A reverse table lookup is performed on the floating point value in register A. The value is
compared to the values in the 32-bit table using the conditionCode. The index number of the first
table entry that satisfies the test condition is stored in register 0. If no entry is found, register 0 is
unchanged. The index number for the first table entry is zero.

if reg[A] is 32-bit, reg[0] = index of table entry that matches test conditions for reg[A]
if reg[A] is 64-bit, reg[128] = index of table entry that matches test conditions for reg[A]

Opcode: 86

Byte 2: conditionCode
The list of condition codes is as follows:

IDE Symbol IDE Value Description
Z 0x51 Zero
EQ 0x51 Equal
NZ 0x50 Not Zero
NE 0x50 Not Equal

Instruction Reference

Micromega Corporation 84 uM-FPU64 Instruction Set - Release 411

LT 0x72 Less Than
LE 0x62 Less Than or Equal
GT 0x70 Greater Than
GE 0x60 Greater Than or Equal
PZ 0x71 Positive Zero
MZ 0x73 Negative Zero
INF 0xC8 Infinity
FIN 0xC0 Finite
PINF 0xE8 Positive Infinity
MINF 0xEA Minus infinity
NAN 0x44 Not-a-Number (NaN)
TRUE 0x00 True
FALSE 0xFF False

Byte 3: tableSize
Specifies the number of 32-bit values in the table (0-255). If tableSize is 0, the number of 32-bit
values in the table is 256.

Bytes 4-n: tableItem1..tableItemN
The number of 32-bit values specified by tableSize. Each 32-bit value is represented by four bytes
(MSB first).

Special Cases: • only valid inside user-defined functions stored in Flash memory.
• if reg[A] is 64-bit, then the value is converted to 32-bit before being used

See Also: TABLE, LTABLE, POLY

FTOA Convert floating point value to ASCII string

Syntax: FTOA,format

Description: The floating point value in register A is converted to an ASCII string.

Opcode: 1F

Byte 2: format

The floating point value in register A is converted to an ASCII string and stored in the string buffer
at the current selection point. The selection point is updated to point immediately after the inserted
string, so multiple insertions can be appended. The byte immediately following the FTOA opcode
is the format byte and determines the format of the converted value.

If format is zero, as many digits as necessary will be used to represent the number with up to eight
significant digits. Very large or very small numbers are represented in exponential notation. The
length of the displayed value is variable and can be from 3 to 12 characters in length. The special
cases of NaN (Not a Number), +infinity, -infinity, and -0.0 are handled. Examples of the ASCII
strings produced are as follows:

1.0 NaN 0.0
10e20 Infinity -0.0
3.1415927 -Infinity 1.0

Instruction Reference

Micromega Corporation 85 uM-FPU64 Instruction Set - Release 411

-52.333334 -3.5e-5 0.01

If format is non-zero, it is interpreted as a decimal number. The hundreds and tens digits specify
the length of the converted string (to a maximum of 24), and the ones digit specifies the number of
decimal points. If the floating point value is too large for the format specified, asterisks will be
stored. If the number of decimal points is zero, no decimal point will be displayed. Examples of
the display format are as follows: (note: leading spaces are shown where applicable)

Value in register A Format byte Display format
123.567 61 (6.1) 123.6
123.567 62 (6.2) 123.57
123.567 42 (4.2) *.**
0.9999 20 (2.0) 1
0.9999 31 (3.1) 1.0

This instruction is usually followed by a READSTR instruction to read the string.

See Also: STRSET, STRSEL, STRINS, STRCMP, STRFIND, STRFCHR, STRFIELD,
STRINC, STRDEC, STRBYTE, STRTOF, STRTOL, LTOA, READSTR, READSEL

FWRITE Write floating point value

Syntax: FWRITE,register,float32Value

Description: If the PIC data format has been selected (using the PICMODE instruction), the PIC format floating
point value is converted to IEEE 754 format. If register is 32-bit, the floating point value is stored
in register 0. If register is 64-bit, float32Value is converted to 64-bit before being stored in the
register.

if register is 32-bit, reg[register] = 32-bit floating point value
if register is 64-bit, reg[register] = 32-bit value converted to 64-bit floating point

Opcode: 16

Byte 2: register
Register number (0 to 255).

Bytes 3 to 6: float32Value
Four bytes representing a 32-bit floating point value (MSB first).

Special Cases: • if register is 64-bit, the float32Value is converted to 64-bit before being stored.
• if register = 0 or 128, and SETARGS is not active

• if reg[A] is 32-bit, the value is stored in registers 0
• if reg[A] is 64-bit, the value is stored in registers 128

• if register = 0 or 128, and SETARGS is active
• if reg[A] is 32-bit, the value is stored in registers 1 to 9
• if reg[A] is 64-bit, the value is stored in registers 129 to 137

See Also: FWRITE0, FWRITEA, FWRITEX, LWRITE, LWRITE0, LWRITEA, LWRITEX,
DWRITE, WRIND, SETARGS

Instruction Reference

Micromega Corporation 86 uM-FPU64 Instruction Set - Release 411

FWRITEA Write floating point value to register A

Syntax: FWRITEA,float32Value

Description: If the PIC data format has been selected (using the PICMODE instruction), the PIC format floating
point value is converted to IEEE 754 format. If register A is 32-bit, the floating point value is
stored in register A. If register A is 64-bit, the 32-bit floating point value is converted to 64-bit
before being stored in the register A.

if reg[A] is 32-bit, reg[A] = 32-bit floating point value
if reg[A] is 64-bit, reg[A] = 32-bit value converted to 64-bit floating point

Opcode: 17

Bytes 2 to 5: float32Value
Four bytes representing a 32-bit floating point value (MSB first).

See Also: FWRITE, FWRITE0, FWRITEX, LWRITE, LWRITE0, LWRITEA, LWRITEX,
DWRITE, WRIND

FWRITEX Write floating point value to register X

Syntax: FWRITEX,float32Value

Description: If the PIC data format has been selected (using the PICMODE instruction), the PIC format floating
point value is converted to IEEE 754 format. If register X is 32-bit, the floating point value is
stored in register X. If register X is 64-bit, the 32-bit floating point value is converted to 64-bit
before being stored in the register X. Register X is incremented to the next register.

if reg[X] is 32-bit, reg[X] = 32-bit floating point value
if reg[X] is 64-bit, reg[X] = 32-bit value converted to 64-bit floating point
X = X + 1

Opcode: 18

Bytes 2 to 5: float32Value
Four bytes representing a 32-bit floating point value (MSB first).

Special Cases: • if reg[X] is 32-bit, it will not increment past register 127
• if reg[X] is 64-bit, it will not increment past register 255

See Also: FWRITE, FWRITE0, FWRITEA, LWRITE, LWRITE0, LWRITEA, LWRITEX,
DWRITE, WRIND

FWRITE0 Write floating point value to register 0

Syntax: FWRITE0, float32Value

Description: If the PIC data format has been selected (using the PICMODE instruction), the PIC format floating
point value is converted to IEEE 754 format. If register A is 32-bit, the floating point value is

Instruction Reference

Micromega Corporation 87 uM-FPU64 Instruction Set - Release 411

stored in register 0. If register A is 64-bit, the 32-bit floating point value is converted to 64-bit
before being stored in register 128.

if reg[A] is 32-bit, reg[0] = 32-bit floating point value
if reg[A] is 64-bit, reg[128] = 32-bit value converted to 64-bit floating point

Opcode: 19

Bytes 2 to 5: float32Value
Four bytes representing a 32-bit floating point value (MSB first).

Special Cases: • if SETARGS is used
• if reg[A] is 32-bit, the value is stored in registers 1 to 9
• if reg[A] is 64-bit, the value is stored in registers 129 to 137

See Also: FWRITE, FWRITEA, FWRITEX, LWRITE, LWRITE0, LWRITEA, LWRITEX,
DWRITE, WRIND, SETARGS

GOTO Computed GOTO

Syntax: GOTO,register

Description: This instruction jumps to the address determined by adding the register value to the current
function address.

Opcode: 89

Byte 2: register
Register number (0 to 255).

This instruction is only valid in a user-defined function in Flash memory. If the register value is
negative, or the new address is outside the address range of the function, a function return occurs.

See Also: BRA, BRA,cc, JMP, JMP,cc, RET, RET,cc

IEEEMODE Select IEEE floating point format

Syntax: IEEEMODE

Description: Selects the IEEE 754 32-bit floating point format for the FREAD, FREADA, FREADX, FWRITE,
FWRITEA, and FWRITEX instructions. This is the default mode on reset and only needs to be
changed if the PICMODE instruction has been used.

Opcode: F4

See Also: PICMODE

INDA Select A using value in register

Instruction Reference

Micromega Corporation 88 uM-FPU64 Instruction Set - Release 411

Syntax: INDA,register

Description: Select register A using the lower 8 bits of the value in register.

A = reg[register]

Opcode: 7C

Byte 2: register
Register number (0 to 255).

See Also: SELECTA, SELECTX, INDX

INDX Select X using value in register

Syntax: INDX,register

Description: Select register X using the lower 8 bits of the value in register.

X = reg[register]

Opcode: 7D

Byte 2: register
Register number (0 to 255).

See Also: SELECTA, SELECTX, INDA

JMP Unconditional jump

Syntax: JMP,adress

Description: This instruction jumps unconditionally to the instruction at the address specified. If the jump is
within -128 to 127 bytes of the address of the next instruction, the BRA instruction can be used.

Opcode: 83

Bytes 2-3: address
An unsigned word value that specifies the address of the next instruction.

Special Cases: • only valid inside user-defined functions stored in Flash memory.

See Also: BRA, BRA,cc, GOTO, JMP,cc, RET, RET,cc

JMP, cc Conditional jump

Syntax: JMP,conditionCode,address

Instruction Reference

Micromega Corporation 89 uM-FPU64 Instruction Set - Release 411

Description: If the condition is true, this instruction jumps to the instruction at the address specified. If the
condition is false, no jump occurs. If the jump is within -128 to 127 bytes of the address of the
next instruction, the BRA instruction can be used.

Opcode: 84

Byte 2: conditionCode
The list of condition codes is as follows:

IDE Symbol IDE Value Description
Z 0x51 Zero
EQ 0x51 Equal
NZ 0x50 Not Zero
NE 0x50 Not Equal
LT 0x72 Less Than
LE 0x62 Less Than or Equal
GT 0x70 Greater Than
GE 0x60 Greater Than or Equal
PZ 0x71 Positive Zero
MZ 0x73 Negative Zero
INF 0xC8 Infinity
FIN 0xC0 Finite
PINF 0xE8 Positive Infinity
MINF 0xEA Minus infinity
NAN 0x44 Not-a-Number (NaN)
TRUE 0x00 True
FALSE 0xFF False

Bytes 3-4: address
An unsigned word value that specifies the address of the next instruction.

Special Cases: • only valid inside user-defined functions stored in Flash memory.

See Also: BRA, BRA,cc, GOTO, JMP, RET, RET,cc

LABS Long Integer absolute value

Syntax: LABS

Description: The absolute value of the long integer value in register A is stored in register A.

reg[A] = | reg[A] |, status = longStatus(reg[A])

Opcode: BC

See Also: LNEG, FABS, FNEG

Instruction Reference

Micromega Corporation 90 uM-FPU64 Instruction Set - Release 411

LADD Long integer add

Syntax: LADD,register

Description: The long integer value in register is added to register A.

reg[A] = reg[A] + reg[register], status = longStatus(reg[A])

Opcode: 9D

Byte 2: register
Register number (0 to 255).

Special Cases: • if reg[A] is 32-bit and register is 64-bit, the value is converted to 32-bit before being used
• if reg[A] is 64-bit and register is 32-bit, the value is converted to 64-bit before being used

See Also: LADDI, LADD0, FADD, FADDI, FADD0

LADDI Long integer add immediate value

Syntax: LADDI,signedByte

Description: The signed byte value is converted to a long integer and added to register A.

reg[A] = reg[A] + long(signedByte), status = longStatus(reg[A])

Opcode: AF

Byte 2: signedByte
A signed byte value (-128 to 127).

See Also: LADD, LADD0, FADD, FADDI, FADD0

LADD0 Long integer add register 0

Syntax: LADD0

Description: If register A is 32-bit, the long integer value in register 0 is added to register A. If register A is 64-
bit, the long integer value in register 128 is added to register A.

if reg[A] is 32-bit, reg[A] = reg[A] + reg[0]
if reg[A] is 64-bit, reg[A] = reg[A] + reg[128]
status = longStatus(reg[A])

Opcode: A6

See Also: LADD, LADDI, FADD, FADDI, FADD0

Instruction Reference

Micromega Corporation 91 uM-FPU64 Instruction Set - Release 411

LAND Long integer AND

Syntax: LAND,register

Description: The bitwise AND of the values in register A and register is stored in register A.

reg[A] = reg[A] AND reg[register], status = longStatus(reg[A])

Opcode: C0

Byte 2: register
Register number (0 to 255).

Special Cases: • if reg[A] is 32-bit and register is 64-bit, the value is converted to 32-bit before being used
• if reg[A] is 64-bit and register is 32-bit, the value is converted to 64-bit before being used

See Also: LANDI, LBIT, LNOT, LOR, LORI, LSHIFT, LSHIFTI, LXOR

LANDI Long integer AND immediate value

Syntax: LANDI,unsignedByte

Description: The unsigned byte value is converted to a long integer and the bitwise AND of register A and the
value is stored in register A.

reg[A] = reg[A] AND long(signedByte), status = longStatus(reg[A])

Opcode: CB

Byte 2: unsignedByte
An unsigned byte value (0 to 255).

See Also: LAND, LBIT, LNOT, LOR, LORI, LSHIFT, LSHIFTI, LXOR

LBIT Long integer Bit Clear, Set, Toggle, Test

Syntax: LBIT,bitCode,register

Description: The specified bit in register is cleared to zero, set to one, toggled, or tested. The action and bit
number are specified by the bitCode. The status byte is set according to the state of selected bit
after the action has been completed (Z if the bit is zero, NZ if the bit is non-zero).

Opcode: 74

Byte 2: bitCode

Op
7 6 5 4 3 2 1 0Bit

Bit Number
Bits 7:6 Operation

IDE Symbol IDE Value Description

Instruction Reference

Micromega Corporation 92 uM-FPU64 Instruction Set - Release 411

CLEAR 0x00 Clear bit
SET 0x40 Set bit
TOGGLE 0x80 Toggle bit
TEST 0xC0 Test bit

Bits 5:0 Bit Number
Value Description
0-63 Bit Number

Byte 3: register
Register number (0 to 255).

See Also: LAND, LANDI, LNOT, LOR, LORI, LSHIFT, LSHIFTI, LXOR, LTST, LTST,
LTSTI

LCMP Long integer compare

Syntax: LCMP,register

Description: Compares the signed long integer value in register A with the value in register and sets the internal
status byte as follows:

1 - - - - S

7 6 5 4 3 2 1 0Bit

- Z
Bit 1 Sign Set if reg[A] < reg[register]
Bit 0 Zero Set if reg[A] = reg[register]

If neither Bit 0 or Bit 1 is set, reg[A] > reg[register]

status = longStatus(reg[A] - reg[register])

Opcode: A1

Byte 2: register
Register number (0 to 255).

The status byte can be read with the READSTATUS instruction.

Special Cases: • if reg[A] is 32-bit and register is 64-bit, the value is converted to 32-bit before being used
• if reg[A] is 64-bit and register is 32-bit, the value is converted to 64-bit before being used

See Also: LCMPI, LCMP0, LCMP2, LUCMP, LUCMPI, LUCMP0, LUCMP2, FCMP, FCMPI,
FCMP0, FCMP2

LCMPI Long integer compare immediate value

Syntax: LCMPI,signedByte

Description: status = longStatus(reg[A] - long(signedByte))

The signed byte value is converted to long integer and compared to the signed long integer value
in register A. The internal status byte is set as follows:

Instruction Reference

Micromega Corporation 93 uM-FPU64 Instruction Set - Release 411

1 - - - - S

7 6 5 4 3 2 1 0Bit

- Z
Bit 1 Sign Set if reg[A] < long(signedByte)
Bit 0 Zero Set if reg[A] = long(signedByte)

If neither Bit 0 or Bit 1 is set, reg[A] > long(signedByte)

Opcode: B3

Byte 2: signedByte
A signed byte value (-128 to 127).

 The status byte can be read with the READSTATUS instruction.

See Also: LCMP, LCMP0, LCMP2, LUCMP, LUCMPI, LUCMP0, LUCMP2, FCMP, FCMPI,
FCMP0, FCMP2

LCMP0 Long integer compare register 0

Syntax: LCMP0

Description: if reg[A] is 32-bit, status = longStatus(reg[A] - reg[0])
if reg[A] is 64-bit, status = longStatus(reg[A] - reg[128])

If register A is 32-bit, the signed long integer value in register A is compared with the value in
register 0, and the internal status byte is set. If register A is 64-bit, the signed long integer value in
register A is compared with the value in register 128, and the internal status byte is set as follows:

1 - - - - S

7 6 5 4 3 2 1 0Bit

- Z
Bit 1 Sign Set if reg[A] < reg[0 | 128]
Bit 0 Zero Set if reg[A] = reg[0 | 128]

If neither Bit 0 or Bit 1 is set, reg[A] > reg[0 | 128]
Opcode: AA

The status byte can be read with the READSTATUS instruction.

See Also: LCMP, LCMPI, LCMP2, LUCMP, LUCMPI, LUCMP0, LUCMP2, FCMP, FCMPI,
FCMP0, FCMP2

LCMP2 Long integer compare

Syntax: LCMP2,register1,register2

Description: Compares the signed long integer value in register1 with the value in register2 and sets the
internal status byte as follows:

1 - - - - S

7 6 5 4 3 2 1 0Bit

- Z

Instruction Reference

Micromega Corporation 94 uM-FPU64 Instruction Set - Release 411

Bit 1 Sign Set if reg[register1] < reg[register2]
Bit 0 Zero Set if reg[register1] = reg[register2]

If neither Bit 0 or Bit 1 is set, reg[register1] > reg[register2]

status = longStatus(reg[register1] - reg[register2])

Opcode: B9

Byte 2: register1
Register number (0 to 255).

Byte 3: register2
Register number (0 to 255).

The status byte can be read with the READSTATUS instruction.

Special Cases: • if register1 is 32-bit and register2 is 64-bit, the value is converted to 32-bit before being used
• if register1 is 64-bit and register2 is 32-bit, the value is converted to 64-bit before being used

See Also: LCMP, LCMPI, LCMP0, LUCMP, LUCMPI, LUCMP0, LUCMP2, FCMP, FCMPI,
FCMP0, FCMP2

LCOPYI Copy Immediate value

Syntax: LCOPYI,signedByte,register

Description: The 8-bit signed value is converted to a long integer and copied to register.

reg[register] = long(signedByte), status = longStatus(reg[register])

Opcode: 11

Byte 2: signedByte
An signed byte value (-128 to 127).

Byte 3: register
Register number (0 to 255).

See Also: FCOPYI, COPY0, COPYA, COPYX

LDEC Long integer decrement

Syntax: LDEC,register

Description: The long integer value in register is decremented by one. The long integer status is stored in the
status byte.

reg[register] = reg[register] - 1, status = longStatus(reg[register])

Opcode: BE

Instruction Reference

Micromega Corporation 95 uM-FPU64 Instruction Set - Release 411

Byte 2: register
Register number (0 to 255).

See Also: LINC

LDIV Long integer divide

Syntax: LDIV,register

Description: The long integer value in register A is divided by the signed value in register, and the result is
stored in register A. If register A is 32-bit, the remainder is stored in register 0. If register A is 64-
bit, the remainder is stored in register 128.

reg[A] = reg[A] / reg[register]
if reg[A] is 32-bit, reg[0] = remainder
if reg[A] is 64-bit, reg[128] = remainder
status = longStatus(reg[A])

Opcode: A0

Byte 2: register
Register number (0 to 255).

Special Cases: • if reg[A] is 32-bit and register is 64-bit, the value is converted to 32-bit before being used
• if reg[A] is 64-bit and register is 32-bit, the value is converted to 64-bit before being used
• if reg[register] is zero, the result is the largest positive integer
(32-bit: $7FFFFFFF, 64-bit:$7FFFFFFFFFFFFFFF)

See Also: LDIVI, LDIV0, LUDIV, LUDIVI, LUDIV0, FDIV, FDIVI, FDIV0, FDIVR,
FDIVRI, FDIVR0, FMOD

LDIVI Long integer divide by immediate value

Syntax: LDIVI,signedByte

Description: The signed byte value is converted to a long integer and register A is divided by the converted
value. The result is stored in register A. If register A is 32-bit, the remainder is stored in register 0.
If register A is 64-bit, the remainder is stored in register 128.

reg[A] = reg[A] / long(signedByte)
if reg[A] is 32-bit, reg[0] = remainder
if reg[A] is 64-bit, reg[128] = remainder
status = longStatus(reg[A])

Opcode: B2

Byte 2: signedByte
A signed byte value (-128 to 127).

Special Cases: • if the signed byte value is zero, the result is the largest positive integer

Instruction Reference

Micromega Corporation 96 uM-FPU64 Instruction Set - Release 411

(32-bit: $7FFFFFFF, 64-bit:$7FFFFFFFFFFFFFFF)

See Also: LDIV, LDIV0, LUDIV, LUDIVI, LUDIV0, FDIV, FDIVI, FDIV0, FDIVR,
FDIVRI, FDIVR0, FMOD

LDIV0 Long integer divide by register 0

Syntax: LDIV0

Description: If register A is 32-bit, the long integer value in register A is divided by the signed long integer
value in register 0, and the result is stored in register A with the remainder stored in register 0. If
register A is 64-bit, the long integer value in register A is divided by the signed long integer value
in register 128, and the result is stored in register A with the remainder stored in register 128.

if reg[A] is 32-bit, reg[A] = reg[A] / reg[0], reg[0] = remainder
if reg[A] is 64-bit, reg[A] = reg[A] / reg[128], reg[128] = remainder
status = longStatus(reg[A])

Opcode: A9

Special Cases: • if reg[0 | 128] is zero, the result is the largest positive integer
(32-bit: $7FFFFFFF, 64-bit:$7FFFFFFFFFFFFFFF)

See Also: LDIV, LDIVI, LUDIV, LUDIVI, LUDIV0, FDIV, FDIVI, FDIV0, FDIVR,
FDIVRI, FDIVR0, FMOD

LEFT Left Parenthesis

Syntax: LEFT

Description: Saves the current registerA and allocates a temporary register as register A.

Opcode: 14

The LEFT parenthesis instruction saves the current register A selection, allocates the next
temporary register, sets the value of the temporary register to the current register A value, then
selects the temporary register as register A. The RIGHT parenthesis instruction is used to restore
previous values. When used together, these instruction are like parentheses in an equation, and can
be used to allocate temporary registers, and change the order of a calculation. Parentheses can be
nested up to eight levels. If register A is 32-bit, the 32-bit temporary registers are used. If register
A is 64-bit, the 64-bit temporary registers are used.

Special Cases: • If the maximum number of temporary register is exceeded, reg[A] is set to NaN, and the stack
level is reset to zero.

See Also: RIGHT, SETARGS

LINC Long integer increment

Syntax: LINC,register

Instruction Reference

Micromega Corporation 97 uM-FPU64 Instruction Set - Release 411

Description: The long integer value in register is incremented by one. The long integer status is stored in the
status byte.

reg[register] = reg[register] + 1, status = longStatus(reg[register])

Opcode: BD

Byte 2: register
Register number (0 to 255).

See Also: LDEC

LMAX Long integer maximum

Syntax: LMAX,register

Description: The maximum signed long integer value of register A and register is stored in register A.

reg[A] = max(reg[A], reg[register]), status = longStatus(reg[A])

Opcode: C5

Byte 2: register
Register number (0 to 255).

Special Cases: • if reg[A] is 32-bit and register is 64-bit, the value is converted to 32-bit before being used
• if reg[A] is 64-bit and register is 32-bit, the value is converted to 64-bit before being used
• if either value is NaN, then the result is NaN

See Also: LMIN, FMAX, FMIN

LMIN Long integer minimum

Syntax: LMIN,register

Description: The minimum signed long integer value of register A and register is stored in register A.

reg[A] = min(reg[A], reg[register]), status = longStatus(reg[A])

Opcode: C4

Byte 2: register
Register number (0 to 255).

Special Cases: • if reg[A] is 32-bit and register is 64-bit, the value is converted to 32-bit before being used
• if reg[A] is 64-bit and register is 32-bit, the value is converted to 64-bit before being used
• if either value is NaN, then the result is NaN

See Also: LMAX, FMAX, FMIN

Instruction Reference

Micromega Corporation 98 uM-FPU64 Instruction Set - Release 411

LMUL Long integer multiply

Syntax: LMUL,register

Description: The long integer value in register A is multiplied by the value in register.

reg[A] = reg[A] * reg[register], status = longStatus(reg[A])

Opcode: 9F

Byte 2: register
Register number (0 to 255).

Special Cases: • if reg[A] is 32-bit and register is 64-bit, the value is converted to 32-bit before being used
• if reg[A] is 64-bit and register is 32-bit, the value is converted to 64-bit before being used

See Also: LMULI, LMUL0, FMUL, FMULI, FMUL0

LMULI Long integer multiply by immediate value

Syntax: LMULI,signedByte

Description: The signed byte value is converted to a long integer and register A is multiplied by the converted
value.

reg[A] = reg[A] * long(signedByte), status = longStatus(reg[A])

Opcode: B1

Byte 2: signedByte
A signed byte value (-128 to 127).

See Also: LMUL, LMUL0, FMUL, FMULI, FMUL0

LMUL0 Long integer multiply by register 0

Syntax: LMUL0

Description: If register A is 32-bit, the long integer value in register A is multiplied by the value in register 0. If
register A is 64-bit, the long integer value in register A is multiplied by the value in register 128.

if reg[A] is 32-bit, reg[A] = reg[A] * reg[0]
if reg[A] is 64-bit, reg[A] = reg[A] * reg[128]
status = longStatus(reg[A])

Opcode: A8

See Also: LMUL, LMULI, FMUL, FMULI, FMUL0

Instruction Reference

Micromega Corporation 99 uM-FPU64 Instruction Set - Release 411

LNEG Long integer negate

Syntax: LNEG

Description: The negative of the long integer value in register A is stored in register A.

reg[A] = -reg[A], status = longStatus(reg[A])

Opcode: BB

See Also: LABS, FABS, FNEG

LNOT A = NOT A

Syntax: LNOT

Description: The bitwise complement of the value in register A is stored in register A.

reg[A] = NOT reg[A], status = longStatus(reg[A])

Opcode: BF

See Also: LAND, LANDI, LBIT, LOR, LORI, LSHIFT, LSHIFTI, LXOR

LOAD Load register 0 with value of register

Syntax: LOAD,register

Description: If register A is 32-bit, register 0 is loaded with the value in register. If register A is 64-bit, register
128 is loaded with the value in register.

if reg[A] is 32-bit, reg[0] = reg[register]
if reg[A] is 64-bit, reg[128] = reg[register]
status = longStatus(reg[A])

Opcode: 0A

Byte 2: register
Register number (0 to 255).

Special Cases: • if SETARGS is used
• if reg[A] is 32-bit, the value is stored in registers 1 to 9
• if reg[A] is 64-bit, the value is stored in registers 129 to 137

See Also: LOADA, LOADX, ALOADX, XSAVE, XSAVEA, SETARGS

LOADA Load register 0 with the value of register A

Syntax: LOADA

Instruction Reference

Micromega Corporation 100 uM-FPU64 Instruction Set - Release 411

Description: If register A is 32-bit, register 0 is loaded with the value in register A. If register A is 64-bit,
register 128 is loaded with the value in register A.

if reg[A] is 32-bit, reg[0] = reg[A], status = longStatus(reg[0])
if reg[A] is 64-bit, reg[128] = reg[A], status = longStatus(reg[128])

Opcode: 0B

Special Cases: • if SETARGS is used
• if reg[A] is 32-bit, the value is stored in registers 1 to 9
• if reg[A] is 64-bit, the value is stored in registers 129 to 137

See Also: LOAD, LOADX, ALOADX, XSAVE, XSAVEA

Instruction Reference

Micromega Corporation 101 uM-FPU64 Instruction Set - Release 411

LOADBYTE Load register 0 with 8-bit signed value

Syntax: LOADBYTE,signedByte

Description: If register A is 32-bit, register 0 is loaded with the 8-bit signed integer value converted to 32-bit
floating point value. If register A is 64-bit, register 128 is loaded with the 8-bit signed integer
value converted to 64-bit floating point value.

if reg[A] is 32-bit, reg[0] = float(signedByte)
if reg[A] is 64-bit, reg[128] = float(signedByte)

Opcode: 59

Byte 2: signedByte
A signed byte value (-128 to 127).

Special Cases: • if SETARGS is used
• if reg[A] is 32-bit, the value is stored in registers 1 to 9
• if reg[A] is 64-bit, the value is stored in registers 129 to 137

See Also: LOADUBYTE, LOADWORD, LOADUWORD, LOADE, LOADPI, LONGBYTE,
LONGUBYTE, LONGWORD, LONGUWORD, LOADIND, SETARGS

LOADE Load register 0 with floating point value of e

Syntax: LOADE

Description: If register A is 32-bit, register 0 is loaded with the floating point value of e (2.7182818). If register
A is 64-bit, register 128 is loaded with the floating point value of e (2.718281828459045).

if reg[A] is 32-bit, reg[0] = 2.7182818
if reg[A] is 64-bit, reg[128] = 2.718281828459045

Opcode: 5D

Special Cases: • if SETARGS is used
• if reg[A] is 32-bit, the value is stored in registers 1 to 9
• if reg[A] is 64-bit, the value is stored in registers 129 to 137

See Also: LOADBYTE, LOADUBYTE, LOADWORD, LOADUWORD, LOADPI, LONGBYTE,
LONGUBYTE, LONGWORD, LONGUWORD, LOADIND, SETARGS

LOADIND Load Indirect

Syntax: LOADIND,register

Description: If register A is 32-bit, register 0 is loaded with the data value from the indirect pointer specified by
register. If register A is 64-bit, register 128 is loaded with the data value from the indirect pointer
specified by register. See the SETIND instruction for a description of pointers.

Instruction Reference

Micromega Corporation 102 uM-FPU64 Instruction Set - Release 411

if reg[A] is 32-bit, reg[0] = data value pointed to by register
if reg[A] is 64-bit, reg[128] = data value pointed to by register

Opcode: 7A

Byte 2: register
Register number (0 to 255).

Special Cases: • if reg[A] is 32-bit and the data value pointed to by register is 64-bit, the value is converted to 32-
bit before being used
• if reg[A] is 64-bit and the data value pointed to by register is 32-bit, the value is converted to 64-
bit before being used

Special Cases: • if SETARGS is active
• if reg[A] is 32-bit, the value is stored in registers 1 to 9
• if reg[A] is 64-bit, the value is stored in registers 129 to 137

See Also: SETIND, ADDIND, WRIND, RDIND, COPYIND, SAVEIND, SETARGS

LOADMA Load register 0 with the value from matrix A

Syntax: LOADMA,row,column

Description: Load register 0 with a value from matrix A. Row and column numbers start from 0. Additional
information is available in the Using the uM-FPU64 Matrix Instructions document.

if reg[A] is 32-bit, reg[0] = matrix A [row, column]
if reg[A] is 64-bit, reg[128] = matrix A [row, column]

Opcode: 68

Byte 2: rows
If bit 7 = 0, bits 6:0 specify the row of the matrix.
If bit 7 = 1, bits 6:0 specify a register number, and the lower 8 bits of the register specify the row

of the matrix.
Byte 3: columns

If bit 7 = 0, bits 6:0 specify the column of the matrix.
If bit 7 = 1, bits 6:0 specify a register number, and the lower 8 bits of the register specify the

column of the matrix.

Special Cases: • if row or column is out of range, register 0 is set to NaN.
• if reg[A] is 64-bit, the value from the matrix is converted to 32-bit before being stored

in register 128

See Also: FFT, MOP, SELECTMA, SELECTMB, SELECTMC, LOADMB, LOADMC, SAVEMA,
SAVEMB, SAVEMC

Instruction Reference

Micromega Corporation 103 uM-FPU64 Instruction Set - Release 411

LOADMB Load register 0 with the value from matrix A

Syntax: LOADMA,row,column

Description: Load register 0 with a value from matrix B. Row and column numbers start from 0. Additional
information is available in the Using the uM-FPU64 Matrix Instructions document.

if reg[A] is 32-bit, reg[0] = matrix B [row, column]
if reg[A] is 64-bit, reg[128] = matrix B [row, column]

Opcode: 69

Byte 2: rows
If bit 7 = 0, bits 6:0 specify the row of the matrix.
If bit 7 = 1, bits 6:0 specify a register number, and the lower 8 bits of the register specify the row

of the matrix.
Byte 3: columns

If bit 7 = 0, bits 6:0 specify the column of the matrix.
If bit 7 = 1, bits 6:0 specify a register number, and the lower 8 bits of the register specify the

column of the matrix.

Special Cases: • if row or column is out of range, register 0 is set to NaN.
• if reg[A] is 64-bit, the value from the matrix is converted to 32-bit before being stored

in register 128

See Also: MOP, SELECTMA, SELECTMB, SELECTMC, LOADMA, LOADMC, SAVEMA,
SAVEMB, SAVEMC

LOADMC Load register 0 with the value from matrix A

Syntax: LOADMA,row,column

Description: Load register 0 with a value from matrix C. Row and column numbers start from 0. Additional
information is available in the Using the uM-FPU64 Matrix Instructions document.

if reg[A] is 32-bit, reg[0] = matrix C [row, column]
if reg[A] is 64-bit, reg[128] = matrix C [row, column]

Opcode: 6A

Byte 2: rows
If bit 7 = 0, bits 6:0 specify the row of the matrix.
If bit 7 = 1, bits 6:0 specify a register number, and the lower 8 bits of the register specify the row

of the matrix.
Byte 3: columns

If bit 7 = 0, bits 6:0 specify the column of the matrix.
If bit 7 = 1, bits 6:0 specify a register number, and the lower 8 bits of the register specify the

column of the matrix.

Instruction Reference

Micromega Corporation 104 uM-FPU64 Instruction Set - Release 411

Special Cases: • if row or column is out of range, register 0 is set to NaN.
• if reg[A] is 64-bit, the value from the matrix is converted to 32-bit before being stored

in register 128

See Also: MOP, SELECTMA, SELECTMB, SELECTMC, LOADMA, LOADMB, SAVEMA,
SAVEMB, SAVEMC

LOADPI Load register 0 with value of Pi

Syntax: LOADPI

Description: If register A is 32-bit, register 0 is loaded with the floating point value of pi (3.1415927). If
register A is 64-bit, register 128 is loaded with the floating point value of pi (3.141592653589793).

if reg[A] is 32-bit, reg[0] = 3.1415927
if reg[A] is 64-bit, reg[128] = 3.141592653589793

Opcode: 5E

Special Cases: • if SETARGS is used
• if reg[A] is 32-bit, the value is stored in registers 1 to 9
• if reg[A] is 64-bit, the value is stored in registers 129 to 137

See Also: LOADBYTE, LOADUBYTE, LOADWORD, LOADUWORD, LOADE, LONGBYTE,
LONGUBYTE, LONGWORD, LONGUWORD, LOADIND, SETARGS

LOADUBYTE Load register 0 with 8-bit unsigned value

Syntax: LOADUBYTE,unsignedByte

Description: If register A is 32-bit, register 0 is loaded with the 8-bit unsigned integer value converted to 32-bit
floating point value. If register A is 64-bit, register 128 is loaded with the 8-bit unsigned integer
value converted to 64-bit floating point value.

if reg[A] is 32-bit, reg[0] = float(unsignedByte)
if reg[A] is 64-bit, reg[128] = float(unsignedByte)

Opcode: 5A

Byte 2: unsignedByte
An unsigned byte value (0 to 255).

Special Cases: • if SETARGS is used
• if reg[A] is 32-bit, the value is stored in registers 1 to 9
• if reg[A] is 64-bit, the value is stored in registers 129 to 137

See Also: LOADBYTE, LOADWORD, LOADUWORD, LOADE, LOADPI, LONGBYTE,
LONGUBYTE, LONGWORD, LONGUWORD, LOADIND, SETARGS

Instruction Reference

Micromega Corporation 105 uM-FPU64 Instruction Set - Release 411

LOADUWORD Load register 0 with 16-bit unsigned value

Syntax: LOADUWORD,unsignedWord

Description: If register A is 32-bit, register 0 is loaded with the 16-bit unsigned integer value converted to 32-
bit floating point value. If register A is 64-bit, register 128 is loaded with the 16-bit unsigned
integer value converted to 64-bit floating point value.

if reg[A] a 32-bit, reg[0] = float(unsignedWord)
if reg[A] a 64-bit, reg[128] = float(unsignedWord)

Opcode: 5C

Bytes 2-3: unsignedWord
An unsigned word value (0 to 65535).

Special Cases: • if SETARGS is used
• if reg[A] is 32-bit, the value is stored in registers 1 to 9
• if reg[A] is 64-bit, the value is stored in registers 129 to 137

See Also: LOADBYTE, LOADUBYTE, LOADWORD, LOADUWORD, LOADE, LOADPI,
LONGBYTE, LONGUBYTE, LONGWORD, LOADIND, SETARGS

LOADWORD Load register 0 with 16-bit signed value

Syntax: LOADWORD,signedWord

Description: If register A is 32-bit, register 0 is loaded with the 16-bit signed integer value converted to 32-bit
floating point value. If register A is 64-bit, register 128 is loaded with the 16-bit signed integer
value converted to 64-bit floating point value.

if reg[A] is 32-bit, reg[0] = float(signedWord)
if reg[A] is 64-bit, reg[128] = float(signedWord)

Opcode: 5B

Bytes 2-3: signedWord
A signed word value (-32768 to 32767).

Special Cases: • if SETARGS is used
• if reg[A] is 32-bit, the value is stored in registers 1 to 9
• if reg[A] is 64-bit, the value is stored in registers 129 to 137

See Also: LOADBYTE, LOADUBYTE, LOADUWORD, LOADE, LOADPI, LONGBYTE,
LONGUBYTE, LONGWORD, LONGUWORD, LOADIND, SETARGS

Instruction Reference

Micromega Corporation 106 uM-FPU64 Instruction Set - Release 411

LOADX Load register 0 with the value of register X

Syntax: LOADX

Description: If register A is 32-bit, register 0 is loaded with the value in register X. If register A is 64-bit,
register 128 is loaded with the value in register X.

if reg[A] is 32-bit, reg[0] = reg[X], status = longStatus(reg[0]), X = X + 1
if reg[A] is 64-bit, reg[128] = reg[X], status = longStatus(reg[128]), X = X + 1

Opcode: 0C

Special Cases: • if reg[X] is 32-bit, it will not increment past register 127
• if reg[X] is 64-bit, it will not increment past register 255
• if SETARGS is used

• if reg[A] is 32-bit, the value is stored in registers 1 to 9
• if reg[A] is 64-bit, the value is stored in registers 129 to 137

See Also: LOAD, LOADA, ALOADX, XSAVE, XSAVEA, SETARGS

LOG Logarithm (base e)

Syntax: LOG

Description: Calculates the natural log of the floating point value in register A. The result is stored in register A.
The number e (2.7182818) is the base of the natural system of logarithms.

reg[A] = log(reg[A])

Opcode: 43

Special Cases: • if the value is NaN or less than zero, then the result is NaN
• if the value is +infinity, then the result is +infinity
• if the value is 0.0 or –0.0, then the result is -infinity

See Also: FPOW, FPOWI, FPOW0, EXP, EXP10, LOG10, ROOT, SQRT

LOG10 Logarithm (base 10)

Syntax: LOG10

Description: Calculates the base 10 logarithm of the floating point value in register A. The result is stored in
register A.

reg[A] = log10(reg[A])

Opcode: 44

Special Cases: • if the value is NaN or less than zero, then the result is NaN

Instruction Reference

Micromega Corporation 107 uM-FPU64 Instruction Set - Release 411

• if the value is +infinity, then the result is +infinity
• if the value is 0.0 or –0.0, then the result is -infinity

See Also: FPOW, FPOWI, FPOW0, EXP, EXP10, LOG, ROOT, SQRT

LONGBYTE Load register 0 with 8-bit signed value

Syntax: LONGBYTE,signedByte

Description: If register A is 32-bit, the 8-bit signed value is converted to a long integer and stored in register 0.
If register A is 64-bit, the 8-bit signed value is converted to a long integer and stored in register
128.

if reg[A] is 32-bit, reg[0] = long(signedByte), status = longStatus(reg[0])
if reg[A] is 64-bit, reg[128] = long(signedByte), status = longStatus(reg[128])

Opcode: C6

Byte 2: signedByte
A signed byte value (-128 to 127).

Special Cases: • if SETARGS is used
• if reg[A] is 32-bit, the value is stored in registers 1 to 9
• if reg[A] is 64-bit, the value is stored in registers 129 to 137

See Also: LOADBYTE, LOADUBYTE, LOADWORD, LOADUWORD, LOADE, LOADPI,
LONGUBYTE, LONGWORD, LONGUWORD, LOADIND, SETARGS

LONGUBYTE Load register 0 with 8-bit unsigned value

Syntax: LONGUBYTE,unsignedByte

Description: If register A is 32-bit, the 8-bit unsigned value is converted to a long integer and stored in register
0. If register A is 64-bit, the 8-bit unsigned value is converted to a long integer and stored in
register 128.

if reg[A] is 32-bit, reg[0] = long(unsignedByte), status = longStatus(reg[0])
if reg[A] is 64-bit, reg[128] = long(unsignedByte), status = longStatus(reg[128])

Opcode: C7

Byte 2: unsignedByte
An unsigned byte value (0 to 255).

Special Cases: • if SETARGS is used
• if reg[A] is 32-bit, the value is stored in registers 1 to 9
• if reg[A] is 64-bit, the value is stored in registers 129 to 137

See Also: LOADBYTE, LOADUBYTE, LOADWORD, LOADUWORD, LOADE, LOADPI,
LONGBYTE, LONGWORD, LONGUWORD, LOADIND, SETARGS

Instruction Reference

Micromega Corporation 108 uM-FPU64 Instruction Set - Release 411

LONGUWORD Load register 0 with 16-bit unsigned value

Syntax: LONGUWORD,unsignedByte

Description: If register A is 32-bit, the 16-bit unsigned value is converted to a long integer and stored in register
0. If register A is 64-bit, the 16-bit unsigned value is converted to a long integer and stored in
register 128.

if reg[A] is 32-bit,
reg[0] = long(unsigned (unsignedWord), status = longStatus(reg[0])

if reg[A] is 64-bit,
reg[128] = long(unsigned (unsignedWord), status = longStatus(reg[128])

Opcode: C9

Bytes 2-3: unsignedWord
An unsigned word value (0 to 65535).

Special Cases: • if SETARGS is used
• if reg[A] is 32-bit, the value is stored in registers 1 to 9
• if reg[A] is 64-bit, the value is stored in registers 129 to 137

See Also: LOADBYTE, LOADUBYTE, LOADWORD, LOADUWORD, LOADE, LOADPI,
LONGBYTE, LONGUBYTE, LONGWORD, LOADIND, SETARGS

LONGWORD Load register 0 with 16-bit signed value

Syntax: LONGWORD,signedByte

Description: If register A is 32-bit, the 16-bit signed value is converted to a long integer and stored in register 0.
If register A is 64-bit, the 16-bit signed value is converted to a long integer and stored in register
128.

if reg[A] is 32-bit, reg[0] = long(signed (signedWord), status = longStatus(reg[0])
if reg[A] is 64-bit, reg[128] = long(signed (signedWord), status = longStatus(reg[128])

Opcode: C8

Bytes 2-3: signedWord
A signed word value (-32768 to 32767).

Special Cases: • if SETARGS is used
• if reg[A] is 32-bit, the value is stored in registers 1 to 9
• if reg[A] is 64-bit, the value is stored in registers 129 to 137

See Also: LOADBYTE, LOADUBYTE, LOADWORD, LOADUWORD, LOADE, LOADPI,
LONGBYTE, LONGUBYTE, LONGUWORD, LOADIND, SETARGS

Instruction Reference

Micromega Corporation 109 uM-FPU64 Instruction Set - Release 411

LOR Long integer OR

Syntax: LOR,register

Description: The bitwise OR of the values in register A and register is stored in register A.

reg[A] = reg[A] OR reg[register], status = longStatus(reg[A])

Opcode: C1

Byte 2: register
Register number (0 to 255).

Special Cases: • if reg[A] is 32-bit and register is 64-bit, the value is converted to 32-bit before being used
• if reg[A] is 64-bit and register is 32-bit, the value is converted to 64-bit before being used

See Also: LAND, LANDI, LBIT, LNOT, LORI, LSHIFT, LSHIFTI, LXOR

LORI Long integer OR immediate value

Syntax: LORI,unsignedByte

Description: The unsigned byte value is converted to a long integer and the bitwise OR of register A and the
value is stored in register A.

reg[A] = reg[A] OR long(unsignedByte), status = longStatus(reg[A])

Opcode: CC

Byte 2: unsignedByte
An unsigned byte value (0 to 255).

See Also: LAND, LANDI, LBIT, LNOT, LOR, LSHIFT, LSHIFTI, LXOR

LREAD Read long integer value

Syntax: LREAD,register

Description: The long integer value of register is returned. The four bytes of the 32-bit value must be read
immediately following this instruction.

return 32-bit integer value from reg[register]

Opcode: 94

Byte 2: register
Register number (0 to 255).

Returns: int32Value
Four bytes representing a 32-bit integer value (MSB first).

Instruction Reference

Micromega Corporation 110 uM-FPU64 Instruction Set - Release 411

Special Cases: • if register is 64-bit, the value is converted to 32-bit before being sent.

See Also: SETREAD, FREAD, FREAD0, FREADA, FREADX, LREAD0, LREADA, LREADX,
LREADBYTE, LREADWORD, DREAD, RDIND, READSTR, READSEL, READSTATUS

LREADA Read long integer value from register A

Syntax: LREADX

Description: The long integer value of register A is returned. The four bytes of the 32-bit value must be read
immediately following this instruction.

return 32-bit integer value from reg[A]

Opcode: 95

Returns: int32Value
Four bytes representing a 32-bit integer value (MSB first).

Special Cases: • if reg[A] is 64-bit, the value is converted to 32-bit before being sent.

See Also: SETREAD, FREAD, FREAD0, FREADA, FREADX, LREAD, LREAD0, LREADX,
LREADBYTE, LREADWORD, DREAD, RDIND, READSTR, READSEL, READSTATUS

LREADBYTE Read the lower 8-bits of register A

Syntax: LREADBYTE

Description: The lower 8 bits of register A are returned. The byte containing the 8-bit value must be read
immediately following the instruction.

Return 8-bit integer value from reg[A]

Opcode: 98

Returns: byteValue
One byte representing an 8-bit integer value.

See Also: SETREAD, FREAD, FREAD0, FREADA, FREADX, LREAD, LREAD0, LREADA,
LREADX, LREADWORD, DREAD, RDIND, READSTR, READSEL, READSTATUS

LREADWORD Read the lower 16-bits of register A

Syntax: LREADWORD

Description: Returns the lower 16 bits of register A. The two bytes of the 16-bit value must be read
immediately following this instruction.

Return 16-bit integer value from reg[A]

Instruction Reference

Micromega Corporation 111 uM-FPU64 Instruction Set - Release 411

Opcode: 99

Returns: wordValue
Two bytes representing a 16-bit integer value (MSB first).

See Also: SETREAD, FREAD, FREAD0, FREADA, FREADX, LREAD, LREAD0, LREADA,
LREADX, LREADBYTE, DREAD, RDIND, READSTR, READSEL, READSTATUS

LREADX Read long integer value from register X

Syntax: LREADX

Description: The long integer value from register X is returned, and X is incremented to the next register. The
four bytes of the 32-bit value must be read immediately following this instruction.

Return 32-bit integer value from reg[X], X = X + 1

Opcode: 96

Returns: int32Value
Four bytes representing a 32-bit integer value (MSB first).

Special Cases: • if reg[X] is 64-bit, the value is converted to 32-bit before being sent.

See Also: SETREAD, FREAD, FREAD0, FREADA, FREADX, LREAD, LREAD0, LREADA,
LREADBYTE, LREADWORD, DREAD, RDIND, READSTR, READSEL, READSTATUS

LREAD0 Read long integer value from register 0

Syntax: LREAD0

Description: If register A is 32-bit, the value of register 0 is returned. If register A is 64-bit, the value of register
128 is returned. The four bytes of the 32-bit value must be read immediately following this
instruction.

if reg[A] is 32-bit, return 32-bit integer value from reg[0]
if reg[A] is 64-bit, return 32-bit integer value from reg[128]

Opcode: 97

Returns: int32Value
Four bytes representing a 32-bit integer value (MSB first).

Special Cases: • if reg[A] is 64-bit, the value from reg[128] is converted to 32-bit before being sent.

See Also: SETREAD, FREAD, FREAD0, FREADA, FREADX, LREAD, LREADA, LREADX,
LREADBYTE, LREADWORD, DREAD, RDIND, READSTR, READSEL, READSTATUS

LSET Set register A

Instruction Reference

Micromega Corporation 112 uM-FPU64 Instruction Set - Release 411

Syntax: LSET,register

Description: Set register A to the value of register.

reg[A] = reg[register], status = longStatus(reg[A])

Opcode: 9C

Byte 2: register
Register number (0 to 255).

Special Cases: • if reg[A] is 32-bit and register is 64-bit, the value is converted to 32-bit before being used
• if reg[A] is 64-bit and register is 32-bit, the value is converted to 64-bit before being used

See Also: LSETI, LSET0, FSET, FSETI, FSET0

LSETI Set register from immediate value

Syntax: LSETI,signedByte

Description: The signedByte is converted to a long integer and stored in register A.

reg[A] = long(signedByte), status = longStatus(reg[A])

Opcode: AE

Byte 2: signedByte
A signed byte value (-128 to 127).

See Also: LSET, LSET0, FSET, FSETI, FSET0

LSET0 Set register A from register 0

Syntax: LSET0

Description: If register A is 32-bit, it is set to the value of register 0. If register A is 64-bit, it is set to the value
of register 128.

if reg[A] is 32-bit, reg[A] = reg[0]
if reg[A] is 64-bit, reg[A] = reg[128]
status = longStatus(reg[A])

Opcode: A5

See Also: LSET, LSETI, FSET, FSETI, FSET0

LSHIFT Long integer shift

Instruction Reference

Micromega Corporation 113 uM-FPU64 Instruction Set - Release 411

Syntax: LSHIFT,register

Description: The shift count is specified by the long integer value in register. Register A is shifted left or right
depending on the shift count. If the shift count is positive, a left shift is performed with the number
of bits equal to the shift count. If the shift count is -1 to -63, a logical right shift is performed with
the number of bits equal to the absolute value of the shift count. If the shift count is -64 to -128, an
arithmetic right shift is performed with the number of bits equal to the absolute value of the shift
count - 64.

if reg[register] > 0, then reg[A] = reg[A] shifted left by reg[register] bits
-63 < reg[register] < 0 and , then reg[A] = reg[A] shifted right by -reg[register] bits
-128 < reg[register] < -64, then reg[A] = reg[A] shifted right by -(reg[register]+64) bits
status = longStatus(reg[A])

Opcode: C3

Byte 2: register
Register number (0 to 255).

Special Cases: • if reg[register] = 0 or -64, no shift occurs
• if reg[A] is 32-bit and (reg[register] > 32 or reg[register] < –32), then reg[A] = 0
• if reg[A] is 64-bit and (reg[register] > 64 or reg[register] < –64), then reg[A] = 0

See Also: LAND, LANDI, LBIT, LNOT, LOR, LORI, LSHIFTI, LXOR

LSHIFTI Long integer shift using immediate value

Syntax: LSHIFTI,signedByte

Description: The shift count is specified by the signed byte value. Register A is shifted left or right depending
on the shift count. If the shift count is positive, a left shift is performed with the number of bits
equal to the shift count. If the shift count is -1 to -63, a logical right shift is performed with the
number of bits equal to the absolute value of the shift count. If the shift count is -64 to -128, an
arithmetic right shift is performed with the number of bits equal to the absolute value of the shift
count - 64.

signedByte > 0, then reg[A] = reg[A] shifted left by signedByte bits
-63 < signedByte < 0 and , then reg[A] = reg[A] shifted right by -signedByte bits
-128 < signedByte < -64, then reg[A] = reg[A] shifted right by -(signedByte+64) bits
status = longStatus(reg[A])

Opcode: CA

Byte 2: signedByte
A signed byte value (-128 to 127).

Special Cases: • if signedByte = 0 or -64, no shift occurs
• if reg[A] is 32-bit and (signedByte > 32 or signedByte < –32), then reg[A] = 0
• if reg[A] is 64-bit and (signedByte > 64 or signedByte < –64), then reg[A] = 0

Instruction Reference

Micromega Corporation 114 uM-FPU64 Instruction Set - Release 411

See Also: LAND, LANDI, LBIT, LNOT, LOR, LORI, LSHIFT, LXOR

LSTATUS Get long integer status

Syntax: LSTATUS,register

Description: Set the internal status byte to the long integer status of the value in register. The status byte can be
used directly by instructions in user-defined functions, or read by the microcontroller with the
READSTATUS instruction. It is set as follows:

1 - - - - S

7 6 5 4 3 2 1 0Bit

- Z

Bit 1 Sign Set if the value is negative
Bit 0 Zero Set if the value is zero

status = longStatus(reg[register])

Opcode: B7

Byte 2: register
Register number (0 to 255).

See Also: FSTATUS, FSTATUSA, LSTATUSA, READSTATUS

LSTATUSA Get long integer status of register A

Syntax: LSTATUSA

Description: status = longStatus(reg[A])

Set the internal status byte to the long integer status of the value in register A. The status byte can
be used directly by instructions in user-defined functions, or read by the microcontroller with the
READSTATUS instruction. It is set as follows:

1 - - - - S

7 6 5 4 3 2 1 0Bit

- Z

Bit 1 Sign Set if the value is negative
Bit 0 Zero Set if the value is zero

Opcode: B8

See Also: FSTATUS, FSTATUSA, LSTATUS, READSTATUS

LSUB Long integer subtract

Syntax: LSUB,register

Description: The long integer value in register is subtracted from register A.

Instruction Reference

Micromega Corporation 115 uM-FPU64 Instruction Set - Release 411

 reg[A] = reg[A] - reg[register], status = longStatus(reg[A])

Opcode: 9E

Byte 2: register
Register number (0 to 255).

Special Cases: • if reg[A] is 32-bit and register is 64-bit, the value is converted to 32-bit before being used
• if reg[A] is 64-bit and register is 32-bit, the value is converted to 64-bit before being used

See Also: LSUBI, LSUB0, FSUB, FSUBI, FSUB0, FSUBR, FSUBRI, FSUBR0

LSUBI Long integer subtract immediate value

Syntax: LSUBI,signedByte

Description: The signed byte value is converted to a long integer and subtracted from register A.

reg[A] = reg[A] - long(signedByte), status = longStatus(reg[A])

Opcode: B0

Byte 2: signedByte
A signed byte value (-128 to 127).

See Also: LSUB, LSUB0, FSUB, FSUBI, FSUB0, FSUBR, FSUBRI, FSUBR0

LSUB0 Long integer subtract register 0

Syntax: LSUB0

Description: If register A is 32-bit, the long integer value in register 0 is subtracted from register A. If register A
is 64-bit, the long integer value in register 128 is subtracted from register A.

if reg[A] is 32-bit, reg[A] = reg[A] - reg[0]
if reg[A] is 64-bit, reg[A] = reg[A] - reg[128]
status = longStatus(reg[A])

Opcode: A7

See Also: LSUB, LSUBI, FSUB, FSUBI, FSUB0, FSUBR, FSUBRI, FSUBR0

LTABLE Long integer reverse table lookup

Syntax: LTABLE,conditionCode,tableSize,TableItem1...TableItemN

Description: It performs a reverse table lookup on a long integer value. The value in register A is compared to
the values in the 32-bit table using the specified test condition. The index number of the first table
entry that satisfied the test condition is stored in register 0. If no entry is found, register 0 is

Instruction Reference

Micromega Corporation 116 uM-FPU64 Instruction Set - Release 411

unchanged. The index number for the first table entry is zero.

if reg[A] is 32-bit,
reg[0] = index of table entry that matches test conditions, status = longStatus(reg[0])
if reg[A] is 64-bit,
reg[128] = index of table entry that matches test conditions, status = longStatus(reg[128])

Opcode: 87

Byte 2: conditionCode
The list of condition codes is as follows:

IDE Symbol IDE Value Description
Z 0x51 Zero
EQ 0x51 Equal
NZ 0x50 Not Zero
NE 0x50 Not Equal
LT 0x72 Less Than
LE 0x62 Less Than or Equal
GT 0x70 Greater Than
GE 0x60 Greater Than or Equal
PZ 0x71 Positive Zero
MZ 0x73 Negative Zero
INF 0xC8 Infinity
FIN 0xC0 Finite
PINF 0xE8 Positive Infinity
MINF 0xEA Minus infinity
NAN 0x44 Not-a-Number (NaN)
TRUE 0x00 True
FALSE 0xFF False

Byte 3: tableSize
Specifies the number of 32-bit values in the table (0-255). If tableSize is 0, the number of 32-bit
values in the table is 256.

Bytes 4-n: TableItem1...TableItemN
32-bit long integer values

Special Cases: • only valid inside user-defined functions stored in Flash memory.
• if reg[A] is 64-bit, then the value is converted to 32-bit before being used.

See Also: TABLE, FTABLE, POLY

LTOA Convert long integer value to ASCII string and store in string buffer

Syntax: LTOA,format

Description: The long integer value in register A is converted to an ASCII string and stored in the string buffer
at the current selection point. The selection point is updated to point immediately after the inserted
string, so multiple insertions can be appended. The byte immediately following the LTOA opcode

Instruction Reference

Micromega Corporation 117 uM-FPU64 Instruction Set - Release 411

is the format byte and determines the format of the converted value.

If the format byte is zero, the length of the converted string is variable, depending on the size of
the number. Examples of the converted string are as follows:

1
500000
-3598390

If the format byte is non-zero, a value between 1 and 24 specifies the length of the converted
string. The converted string is right justified. If the format byte is positive, leading spaces are used.
If the converted string is longer than the specified length, asterisks are stored. If the length is
specified as zero, the string will be as long as necessary to represent the number.

Leading Zeroes
If the format byte is negative, its absolute value specifies the length of the converted string, and
leading zeros are used.

Unsigned
If 100 is added to the format value the value is converted as an unsigned long integer, otherwise it
is converted as an signed long integer.

Hexadecimal
If the format byte is 40 to 56, the hexadecimal value of the register is stored. The length of the
converted string is determined by subtracting 40 from the format byte. (e.g. 41 stores one
hexadecimal digit, 42 stores two hexadecimal digits, ...). If the format byte is 40, then the
maximum number of hexadecimal digits are stored. The maximum number of hexadecimal digits
is 8 for a 32-bit register, and 16 for a 64-bit register.

Examples of the converted string are as follows: (note: leading spaces are shown where
applicable)

 Value in
register A Format byte Description Display format

-1 10 (signed 10) -1
-1 110 (unsigned 10) 4294967295
-1 4 (signed 4) -1
-1 104 (unsigned 4) ****
0 4 (signed 4) 0
0 0 (unformatted) 0

1000 6 (signed 6) 1000
1000 -6 (signed 6, zero fill) 001000

The maximum length of the string is 24. This instruction is usually followed by a READSTR
instruction to read the string.

stringbuffer = converted string

Opcode: 9B

Byte 2: format

See Also: STRSET, STRSEL, STRINS, STRCMP, STRFIND, STRFCHR, STRFIELD,

Instruction Reference

Micromega Corporation 118 uM-FPU64 Instruction Set - Release 411

STRINC, STRDEC, STRBYTE, STRTOF, STRTOL, FTOA, READSTR, READSEL

LTST Long integer bit test

Syntax: LTST,register

Description: The internal status byte is set based on the result of a bitwise AND of the value in register A and
register. The values of register A and register are not changed.

status = longStatus(reg[A] AND reg[register])

 The status byte can be read with the READSTATUS instruction. It is set as follows:

1 - - - - S

7 6 5 4 3 2 1 0Bit

- Z
Bit 1 Sign Set if the MSB of the result is set
Bit 0 Zero Set the result is zero

Opcode: A4

Byte 2: register
Register number (0 to 255).

Special Cases: • if reg[A] is 32-bit and register is 64-bit, the value is converted to 32-bit before being used
• if reg[A] is 64-bit and register is 32-bit, the value is converted to 64-bit before being used

See Also: LTSTI, LTST0, LBIT, LCMP, LCMPI, LCMP0, LUCMP, LUCMPI, LUCMP0

LTSTI Long integer bit test using immediate value

Syntax: LTSTI,unsignedByte

Description: The internal status byte is set based on the result of a bitwise AND of the value in register A and the
unsigned byte value. The value of register A is not changed.

status = longStatus(reg[A] AND long(unsignedByte))

The status byte can be read with the READSTATUS instruction. It is set as follows:

1 - - - - -

7 6 5 4 3 2 1 0Bit

- Z
Bit 0 Zero Set if the result is zero

Opcode: B6

Byte 2: unignedByte
An unsigned byte value (0 to 255).

See Also: LTST, LTST0, LBIT, LCMP, LCMPI, LCMP0, LUCMP, LUCMPI, LUCMP0

Instruction Reference

Micromega Corporation 119 uM-FPU64 Instruction Set - Release 411

LTST0 Long integer bit test register 0

Syntax: LTST0

Description: If register A is 32-bit, the internal status byte is set based on the result of a bitwise AND of the
value in register A and register 0. If register A is 64-bit, the internal status byte is set based on the
result of a bitwise AND of the values in register A and register 128. The values of register A and
register 0 are not changed.

if reg[A] is 32-bit, status = longStatus(reg[A] AND reg[0])
if reg[A] is 64-bit, status = longStatus(reg[A] AND reg[128])

The status byte can be read with the READSTATUS instruction. It is set as follows:

1 - - - - S

7 6 5 4 3 2 1 0Bit

- Z
Bit 1 Sign Set if the MSB of the result is set
Bit 0 Zero Set the result is zero

Opcode: AD

See Also: LTST, LTSTI, LBIT, LCMP, LCMPI, LCMP0, LUCMP, LUCMPI, LUCMP0

LUCMP Unsigned long integer compare

Syntax: LUCMP,register

Description: Compares the unsigned long integer value in register A with the value in register and sets the
internal status byte.

status = longStatus(reg[A] - reg[register])

The status byte can be read with the READSTATUS instruction. It is set as follows:

 1 - - - - S

7 6 5 4 3 2 1 0Bit

- Z
Bit 1 Sign Set if reg[A] < reg[register]
Bit 0 Zero Set if reg[A] = reg[register]

If neither Bit 0 or Bit 1 is set, reg[A] > reg[register]
Opcode: A3

Byte 2: register
Register number (0 to 255).

Special Cases: • if reg[A] is 32-bit and register is 64-bit, the value is converted to 32-bit before being used
• if reg[A] is 64-bit and register is 32-bit, the value is converted to 64-bit before being used

See Also: LCMP, LCMPI, LCMP0, LCMP2, LUCMPI, LUCMP0, LUCMP2, FCMP, FCMPI,

Instruction Reference

Micromega Corporation 120 uM-FPU64 Instruction Set - Release 411

FCMP0, FCMP2

LUCMPI Unsigned long integer compare immediate value

Syntax: LUCMPI,unsignedByte

Description: The unsigned byte value is converted to long integer and compared to register A.

status = longStatus(reg[A] - long(unsignedByte))

The status byte can be read with the READSTATUS instruction. It is set as follows:

1 - - - - S

7 6 5 4 3 2 1 0Bit

- Z
Bit 1 Sign Set if reg[A] < long(unsignedByte)
Bit 0 Zero Set if reg[A] = long(unsignedByte)

If neither Bit 0 or Bit 1 is set, reg[A] > long(unsignedByte)

Opcode: B5

Byte 2: unsignedByte
An unsigned byte value (0 to 255).

See Also: LCMP, LCMPI, LCMP0, LCMP2, LUCMP, LUCMP0, LUCMP2, FCMP, FCMPI,
FCMP0, FCMP2

LUCMP0 Unsigned long integer compare register 0

Syntax: LUCMP0

Description: If register A is 32-bit register, the unsigned long integer value in register A is compared with the
value in register 0, and the internal status byte is set. If register A is 64-bit, the signed long integer
value in register A is compared with the value in register 128, and the internal status byte is set.

if reg[A] is 32-bit, status = longStatus(reg[A] - reg[0])
if reg[A] is 64-bit, status = longStatus(reg[A] - reg[128])

 The status byte can be read with the READSTATUS instruction. It is set as follows:

1 - - - - S

7 6 5 4 3 2 1 0Bit

- Z
Bit 1 Sign Set if reg[A] < reg[0 | 128]
Bit 0 Zero Set if reg[A] = reg[0 | 128]

If neither Bit 0 or Bit 1 is set, reg[A] > reg[0 | 128]

Opcode: AC

LUCMP2 Unsigned long integer compare

Instruction Reference

Micromega Corporation 121 uM-FPU64 Instruction Set - Release 411

Syntax: LUCMP2,register1,register2

Description: Compares the unsigned long integer value in register1 with the value in register2 and sets the
internal status byte.

status = longStatus(reg[register1] - reg[register2])

The status byte can be read with the READSTATUS instruction. It is set as follows:

1 - - - - S

7 6 5 4 3 2 1 0Bit

- Z
Bit 1 Sign Set if reg[register1] < reg[register2]
Bit 0 Zero Set if reg[register1] = reg[register2]

If neither Bit 0 or Bit 1 is set, reg[register1] > reg[register2]

Opcode: BA

Byte 2: register1
Register number (0 to 255).

Byte 3: register2
Register number (0 to 255).

Special Cases: • if reg[register1] is 32-bit and reg[register2] is 64-bit, the value is converted to 32-bit before
being used
• if reg[register1] is 64-bit and reg[register2] is 32-bit, the value is converted to 64-bit before
being used

See Also: LCMP, LCMPI, LCMP0, LCMP2, LUCMP, LUCMPI, LUCMP0, FCMP, FCMPI,
FCMP0, FCMP2

LUDIV Unsigned long integer divide

Syntax: LUDIV,register

Description: The long integer value in register A is divided by the unsigned value in register, and the result is
stored in register A. If register A is 32-bit, the remainder is stored in register 0. If register A is 64-
bit, the remainder is stored in register 128.

reg[A] = reg[A] / reg[register]
if reg[A] is 32-bit, reg[0] = remainder
if reg[A] is 64-bit, reg[128] = remainder
status = longStatus(reg[A])

Opcode: A2

Byte 2: register
Register number (0 to 255).

Instruction Reference

Micromega Corporation 122 uM-FPU64 Instruction Set - Release 411

Special Cases: • if reg[A] is 32-bit and register is 64-bit, the value is converted to 32-bit before being used
• if reg[A] is 64-bit and register is 32-bit, the value is converted to 64-bit before being used
• if reg[register] is zero, the result is the largest unsigned integer
(32-bit: $FFFFFFFF, 64-bit: $FFFFFFFFFFFFFFFF)

See Also: LDIV, LDIVI, LDIV0, LUDIVI, LUDIV0, FDIV, FDIVI, FDIV0, FDIVR,
FDIVRI, FDIVR0, FMOD

LUDIVI Unsigned long integer divide by immediate value

Syntax: LUDIVI,unsignedByte

Description: The unsigned byte value is converted to a long integer and register A is divided by the converted
value. The result is stored in register A. The remainder is stored in register 0.

reg[A] = reg[A] / long(unsignedByte), status = longStatus(reg[A])
if reg[A] is 32-bit, reg[0] = remainder
if reg[A] is 64-bit, reg[128] = remainder

Opcode: B4

Byte 2: unsignedByte
An unsigned byte value (0 to 255).

Special Cases: • if unsignedByte is zero, the result is the largest unsigned integer
(32-bit: $FFFFFFFF, 64-bit: $FFFFFFFFFFFFFFFF)

See Also: LDIV, LDIVI, LDIV0, LUDIV, LUDIV0, FDIV, FDIVI, FDIV0, FDIVR,
FDIVRI, FDIVR0, FMOD

LUDIV0 Unsigned long integer divide by register 0

Syntax: LUDIV0

Description: If register A is 32-bit, the long integer value in register A is divided by the unsigned long integer
value in register 0, and the result is stored in register A with the remainder stored in register 0. If
register A is 64-bit, the long integer value in register A is divided by the unsigned long integer
value in register 128, and the result is stored in register A with the remainder stored in register
128.

if reg[A] is 32-bit, reg[A] = reg[A] / reg[0], reg[0] = remainder
if reg[A] is 64-bit, reg[A] = reg[A] / reg[128], reg[128] = remainder
status = longStatus(reg[A])

Opcode: AB

Special Cases: • if reg[0 | 128] is zero, the result is the largest unsigned integer
(32-bit: $FFFFFFFF, 64-bit: $FFFFFFFFFFFFFFFF)

See Also: LDIV, LDIVI, LDIV0, LUDIV, LUDIVI, FDIV, FDIVI, FDIV0, FDIVR,

Instruction Reference

Micromega Corporation 123 uM-FPU64 Instruction Set - Release 411

FDIVRI, FDIVR0, FMOD

LWRITE Write long integer value

Syntax: LWRITE,register,int32Value

Description: The long integer value is stored in register. If register is 64-bit, int32Value is converted to 64-bit
before being stored in the register.

reg[register] = 32-bit long integer value, status = longStatus(reg[register])

Opcode: 90

Byte 2: register
Register number (0 to 255).

Bytes 3 to 6: int32Value
Four bytes representing a 32-bit integer value (MSB first).

Special Cases: • if register is 64-bit, the value is converted to 64-bit before being stored.
• if register = 0 or 128, and SETARGS is not active

• if reg[A] is 32-bit, the value is stored in registers 0
• if reg[A] is 64-bit, the value is stored in registers 128

• if register = 0 or 128, and SETARGS is active
• if reg[A] is 32-bit, the value is stored in registers 1 to 9
• if reg[A] is 64-bit, the value is stored in registers 129 to 137

See Also: FWRITE, FWRITE0, FWRITEA, FWRITEX, LWRITE0, LWRITEA, LWRITEX,
DWRITE, WRIND, SETARGS

LWRITEA Write long integer value to register A

Syntax: LWRITEA,int32Value

Description: The long integer value is stored in register A.

reg[A] = 32-bit long integer value, status = longStatus(reg[A])

Opcode: 91

Bytes 2 to 5: int32Value
Four bytes representing a 32-bit integer value (MSB first).

Special Cases: • if reg[A] is 64-bit, the value is converted to 64-bit before being stored.

See Also: FWRITE, FWRITE0, FWRITEA, FWRITEX, LWRITE, LWRITE0, LWRITEX,
DWRITE, WRIND

Instruction Reference

Micromega Corporation 124 uM-FPU64 Instruction Set - Release 411

LWRITEX Write long integer value to register X

Syntax: LWRITEX,int32Value

Description: The long integer value is stored in register X.

reg[X] = 32-bit long integer value, status = longStatus(reg[X]), X = X + 1

Opcode: 92

Bytes 2 to 5: int32Value
Four bytes representing a 32-bit integer value (MSB first).

Special Cases: • if reg[X] is 64-bit, the value is converted to 64-bit before being stored.

See Also: FWRITE, FWRITE0, FWRITEA, FWRITEX, LWRITE, LWRITE0, LWRITEA,
DWRITE, WRIND

LWRITE0 Write long integer value to register0

Syntax: LWRITE0,int32Value

Description: If register A is 32-bit, the long integer value is stored in register 0. If register A is 64-bit, the long
integer value is stored in register 128.

if reg[A] is 32-bit, reg[0] = 32-bit long integer value,
status = longStatus(reg[0])

if reg[A] is 64-bit, reg[128] = 32-bit value converted to 64-bit floating point,
status = longStatus(reg[128])

Opcode: 93

Bytes 2 to 5: int32Value
Four bytes representing a 32-bit integer value (MSB first).

Special Cases: • if reg[A] is 64-bit, the value is converted to 64-bit before being stored.
• if SETARGS is used

• if reg[A] is 32-bit, the value is stored in registers 1 to 9
• if reg[A] is 64-bit, the value is stored in registers 129 to 137

See Also: FWRITE, FWRITE0, FWRITEA, FWRITEX, LWRITE, LWRITEA, LWRITEX,
DWRITE, WRIND

LXOR Long integer XOR

Syntax: LXOR,register

Description: The bitwise XOR of the values in register A and register is stored in register A.

Instruction Reference

Micromega Corporation 125 uM-FPU64 Instruction Set - Release 411

reg[A] = reg[A] XOR reg[register], status = longStatus(reg[A])

Opcode: C2

Byte 2: register
Register number (0 to 255).

Special Cases: • if reg[A] is 32-bit and register is 64-bit, the value is converted to 32-bit before being used
• if reg[A] is 64-bit and register is 32-bit, the value is converted to 64-bit before being used

MOP Matrix Operation

Syntax: MOP, action {,byteCount, byte, ...}

Description: Performs matrix operations on 32-bit floating point values. The matrices are stored in 32-bit
registers or RAM. Additional information is available in the Using the uM-FPU64 Matrix
Instructions document.

MOP, SCALAR_SET
MOP, SCALAR_ADD
MOP, SCALAR_SUB
MOP, SCALAR_SUBR
MOP, SCALAR_MUL
MOP, SCALAR_DIV
MOP, SCALAR_DIVR
MOP, SCALAR_POW
MOP, EWISE_SET
MOP, EWISE_ADD
MOP, EWISE_SUB
MOP, EWISE_SUBR
MOP, EWISE_MUL
MOP, EWISE_DIV
MOP, EWISE_DIVR
MOP, EWISE_POW
MOP, MULTIPLY
MOP, IDENTITY
MOP, DIAGONAL
MOP, TRANSPOSE
MOP, COUNT
MOP, SUM
MOP, AVE
MOP, MIN
MOP, MAX
MOP, COPY_AB
MOP, COPY_AC
MOP, COPY_BA
MOP, COPY_BC
MOP, COPY_CA
MOP, COPY_CB
MOP, DETERM
MOP, INVERSE
MOP, LOAD_RA, byteCount, byte, ...
MOP, LOAD_RB, byteCount, byte, ...

Instruction Reference

Micromega Corporation 126 uM-FPU64 Instruction Set - Release 411

MOP, LOAD_RC, byteCount, byte, ...
MOP, LOAD_BA, byteCount, byte, ...
MOP, LOAD_CA, byteCount, byte, ...
MOP, SAVE_AR, byteCount, byte, ...
MOP, SAVE_AB, byteCount, byte, ...
MOP, SAVE_AC, byteCount, byte, ...
MOP, LU_DECOMP
MOP, LU_INVERSE
MOP, LU_DETERM
MOP, LU_SOLVE
MOP, CH_DECOMP
MOP, CH_INVERSE
MOP, CH_DETERM
MOP, CH_SOLVE

Opcode: 6E

Byte 2: matrixOperation

Byte 3: byteCount
The value specifies the number of bytes to follow.

Bytes 4-n: byte, ...
A list of byte values.
These operations can be used to quickly load matrices, save results, or to extract and save matrix
subsets.

Details: The action selects one of the following operations:

Value IDE Symbol IDE Value Description

Scalar Set (x00)
MOP, SCALAR_SET
For each element: MA[r,c] = reg[0]

Scalar Add (x01)
MOP, SCALAR_ADD
For each element: MA[r,c] = MA[r,c] + reg[0]

Scalar Subtract (x02)
MOP, SCALAR_SUB
For each element: MA[r,c] = MA[r,c] - reg[0]

Scalar Subtract (reverse) (x03)
MOP, SCALAR_SUBR
For each element: MA[r,c] = reg[0] - MA[r,c]

Scalar Multiply (x04)
MOP, SCALAR_MUL
For each element: MA[r,c] = MA[r,c] * reg[0]

Scalar Divide (x05)

Instruction Reference

Micromega Corporation 127 uM-FPU64 Instruction Set - Release 411

MOP, SCALAR_DIV
For each element: MA[r,c] = MA[r,c] / reg[0]

Scalar Divide (reverse) (x06)
MOP, SCALAR_DIVR
For each element: MA[r,c] = reg[0] / MA[r,c]

Scalar Power (x07)
MOP, SCALAR_POW
For each element: MA[r,c] = MA[r,c] ** reg[0]

.
Element-wise Set (x08)

MOP, EWISE_SET
For each element: MA[r,c] = MB[r,c]

Element-wise Add (x09)
MOP, EWISE_ADD
For each element: MA[r,c] = MA[r,c] + MB[r,c]

Element-wise Subtract (x0A)
MOP, EWISE_SUB
For each element: MA[r,c] = MA[r,c] - MB[r,c]

Element-wise Subtract (reverse) (x0B)
MOP, EWISE_SUBR
For each element: MA[r,c] = MB[r,c] - MA[r,c]

Element-wise Multiply (x0C)
MOP, EWISE_MUL
For each element: MA[r,c] = MA[r,c] * MB[r,c]

Element-wise Divide (x0D)
MOP, EWISE_DIV
For each element: MA[r,c] = MA[r,c] / MB[r,c]

Element-wise Divide (reverse) (x0E)
MOP, EWISE_DIVR
For each element: MA[r,c] = MB[r,c] / MA[r,c]

Element-wise Power (x0F)
MOP, EWISE_POW
For each element: MA[r,c] = MA[r,c] ** MB[r,c]

Matrix Multiply (x10)
MOP, MULTIPLY
Calculate: MA = MB * MC

Identity Matrix (x11)
MOP, IDENTITY
MA = identity matrix

Diagonal Matrix (x12)

Instruction Reference

Micromega Corporation 128 uM-FPU64 Instruction Set - Release 411

MOP, DIAGONAL
MA = diagonal matrix

Transpose (x13)
MOP, TRANSPOSE
MA = transpose MB

Count (x14)
MOP, COUNT
reg[0] = count of all elements in MA

Sum (x15)
MOP, SUM
reg[0] = sum of all elements in MA

Average (x16)
MOP, AVE
reg[0] = average of all elements in MA

Minimum (x17)
MOP, MIN
reg[0] = minimum of all elements in MA

Maximum (x18)
MOP, MAX
reg[0] = maximum of all elements in MA

Copy Matrix A to Matrix B (x19)
MOP, COPY_AB
Matrix B is set to a copy of matrix A.

Copy Matrix A to Matrix C (x1A)
MOP, COPY_AC
Matrix C is set to a copy of matrix A.

Copy Matrix B to Matrix A (x1B)
MOP, COPY_BA
Matrix A is set to a copy of matrix B.

Copy Matrix B to Matrix C (x1C)
MOP, COPY_BC
Matrix C is set to a copy of matrix B.

Copy Matrix C to Matrix A (x1D)
MOP, COPY_CA
Matrix A is set to a copy of matrix C.

Copy Matrix C to Matrix B (x1E)
MOP, COPY_CB
Matrix B is set to a copy of matrix C.

Matrix Determinant (x1F)

Instruction Reference

Micromega Corporation 129 uM-FPU64 Instruction Set - Release 411

MOP, DETERM
reg[0] = determinant of MA
This operation is only implemented for 2x2 and 3x3 matrices. To calculate the determinant of
larger matrices use the LU decomposition or Cholesky decomposition matrix operations.

Matrix Inverse (x20)
MOP, INVERSE
MA = inverse of MA
This operation is only implemented for 2x2 and 3x3 matrices. To calculate the inverse of
larger matrices use the LU decomposition or Cholesky decomposition matrix operations.

Load Matrix from Registers (x21, 0x22, 0x23)
MOP, LOAD_RA, byteCount, byte, ...
Load matrix A from registers.

MOP, LOAD_RB, byteCount, byte, ...
Load matrix B from registers.

MOP, LOAD_RC, byteCount, byte, ...
Load matrix C from registers.

The load register operations take a list of register numbers and sequentially copy the indexed
register values to the matrix specified. Register 0 is cleared to zero before the indexed values
are copied, to provide an easy way to load zero values to a matrix. If an index is negative, the
absolute value is used as an index, and the negative value of the indexed register is copied.

Load Matrix to Matrix (x24, 0x25)
MOP, LOAD_BA, byteCount, byte, ...
Load matrix A from matrix B.

MOP, LOAD_CA, byteCount, byte, ...
Load matrix A from matrix C.

The load matrix operations take a list of matrix indices and sequentially copy the indexed
matrix values to Matrix A. If an index value is negative, the absolute value is used as an
index, and the negative value of the indexed value is copied. An index of 0x80 is used to copy
the negative of the value at index 0.

Save Matrix A to Registers (x26)
MOP, SAVE_AR, byteCount, byte, ...
This matrix operation takes a list of register numbers and sequentially copies the values from
matrix A to the specified registers. If an index value is negative, the matrix A value for that
index position is not stored.

Save Matrix A to Matrix B (x27)
MOP, SAVE_AB, byteCount, byte, ...
This matrix operation take a list of matrix indices and sequentially copies the values from
matrix A to matrix B. If an index value is negative, the matrix A value for that index position
is not stored.

Save Matrix A to Matrix C (0x28)

Instruction Reference

Micromega Corporation 130 uM-FPU64 Instruction Set - Release 411

MOP, SAVE_AC, byteCount, byte, ...
This matrix operation take a list of matrix indices and sequentially copies the values from
matrix A to matrix C. If an index value is negative, the matrix A value for that index position
is not stored.

LU Decomposition (0x29)
MOP, LU_DECOMP
MC n x n matrix is augmented to n+2 x n and the LU decomposition of the original n x n
matrix is stored in MC.

LU Matrix Inverse (0x2A)
MOP, LU_INVERSE
MA = inverse of original MC n x n matrix
The MOP,LU_DECOMP operation must be done before the MOP,LU_INVERSE operation.

LU Matrix Determinant (0x2B)
MOP, LU_DETERM
reg[0] = determinant of original n x n MC matrix
The MOP,LU_DECOMP operation must be done before the MOP,LU_DETERM operation.

LU Matrix Solve (0x2C)
MOP, LU_SOLVE
The LU decomposition matrix stored in MC is used to solve the set of n linear equations. The
input vector is stored in row n of the augmented MC matrix, and the solution vector is
returned in row n of the augmented MC matrix. The MOP,LU_DECOMP operation must be
done before the first MOP,LU_SOLVE operation. Multiple MOP,LU_SOLVE operations can
be done without repeating the first MOP,LU_DECOMP operation.

Cholesky Decomposition (0x2D)
MOP, CH_DECOMP
MC n x n matrix is augmented to n+2 x n and the Cholesky decomposition of the original n x
n matrix is stored in MC.

Cholesky Matrix Inverse (0x2E)
MOP, CH_INVERSE
The inverse of the original MC n x n matrix is stored in the first n x n elements of MC. The
MOP,CH_DECOMP operation must be done before the MOP,CH_INVERSE operation. The
inverse matrix overwrites the Cholesky decomposition matrix.

Cholesky Matrix Determinant (0x2F)
MOP, CH_DETERM
reg[0] = determinant of original n x n MC matrix
The MOP,CH_DECOMP operation must be done before the MOP,CH_DETERM operation.

Cholesky Matrix Solve (0x30)
MOP, CH_SOLVE
The LU decomposition matrix stored in MC is used to solve the set of n linear equations. The
input vector is stored in row n of the augmented MC matrix, and the solution vector is
returned in row n of the augmented MC matrix. The MOP,CH_DECOMP operation must be
done before the first MOP,CH_SOLVE operation. Multiple MOP,CH_SOLVE operations can
be done without repeating the first MOP,CH_DECOMP operation.

Instruction Reference

Micromega Corporation 131 uM-FPU64 Instruction Set - Release 411

Special Cases: • matrix operations are restricted to 32-bit floating point.
• indirect pointers must be used to select matrices in RAM.
• in a background process, a matrix that starts at register 0 to 15 must not extend beyond

register 15.
• in a background process, larger matrices should be stored using registers 16 to 127, or RAM.

See Also: SELECTMA, SELECTMB, SELECTMC, LOADMA, LOADMB, LOADMC, SAVEMA,
SAVEMB, SAVEMC

NOP No operation

Syntax: NOP

Description: No operation.

Opcode: 00

PICMODE Select PIC floating point format

Syntax: PICMODE

Description: Selects the alternate PIC floating point mode using by many PIC compilers. All internal data on
the uM-FPU is stored in IEEE 754 format, but when the uM-FPU is in PIC mode an automatic
conversion is done by the FREAD, FREADA, FREADX, FWRITE, FWRITEA, and FWRITEX
instructions so the PIC program can use 32-bit floating point data in the alternate format. Normally
this instruction would be issued immediately after the reset as part of the initialization code. The
IEEEMODE instruction can be used to revert to standard IEEE 754 32-bit floating point mode.

Opcode: F5

See Also: IEEEMODE

POLY A = nth order polynomial

Syntax: POLY,count,float32Value1...float32ValueN

Description: This instruction is only valid in a user-defined function in Flash memory.
The value of the specified polynomial is calculated and stored in register A. The general form of
the polynomial is:

 y = A0 + A1x1 + A2x2 + … Anxn

The value of x is the initial value of register A. An nth order polynomial will have n+1 coefficients
stored in the table. The coefficient values A0, A1, A2, … are stored as a series of 32-bit floating
point values (4 bytes) stored in order from An to A0. If a given term in the polynomial is not
needed, a zero must be is stored for that value.

reg[A] = result of nth order polynomial calculation

Opcode: 88

Instruction Reference

Micromega Corporation 132 uM-FPU64 Instruction Set - Release 411

Byte 2: count
The number of 32-bit floating point values that follow.

Bytes 3-n: float32Value1...float32ValueN
Each 32-bit floating point value is represented by four bytes (MSB first).

Assembler Example:

Compiler Example:

Special Cases: • only valid inside user-defined functions stored in Flash memory.
• if reg[A] is 64-bit, then the value is converted to 32-bit before being used, and the result is
converted to 64-bit before being stored.

See Also: TABLE, FTABLE, LTABLE

RADIANS Convert degrees to radians

Syntax: RADIANS

Description: The floating point value in register A is converted from degrees to radians and the result is stored
in register A.

reg[A] = radians(reg[A])

Opcode: 4F

Special Cases: • if the value is NaN, then the result is NaN

See Also: ACOS, ASIN, ATAN, ATAN2, COS, SIN, TAN, DEGREES

RDIND Read data using indirect pointer

Syntax: RDIND,dataType,pointer,count

Description: Read count data values of the specified dataType from the pointer location. If count = 0, then the
count is loaded from the lower 16 bits of register 0. The pointer can be a register pointer or a

POLY, 2 ; polynomial 3x + 5
#float 3.0
#float 5.0

value = POLY(x, 3.0, 5.0) ; value = 3x + 5
value = POLY(x, 1, 0, 0, 1) ; value = x3 + 1

Instruction Reference

Micromega Corporation 133 uM-FPU64 Instruction Set - Release 411

memory pointer. If dataType is different then the data type of the pointer data conversion is
automatically performed. The data items must be read immediately following this instruction. See
the SETIND instruction for a description of pointers. The RDIND instruction has been optimized
for 32-bit transfers of the same data type (e.g. long-to-long or float-to-float). These transfers can be
done at the maximum transfer rate without filling the instruction buffer. Transfers that require data
conversions may require an additional delay between data transfers to avoid exceeding the 256
byte FPU instruction buffer.

Opcode: 71

Byte 2: dataType

-
7 6 5 4 3 2 1 0Bit

Data Type

Bits 3:0 Data Type
IDE Symbol IDE Value Description

INT8 0x08 8-bit signed integer data
UINT8 0x09 8-bit unsigned integer data
INT16 0x0A 16-bit signed integer data
UINT16 0x0B 16-bit unsigned integer data
LONG32 0x0C 32-bit long integer data
FLOAT32 0x0D 32-bit floating point data
LONG64 0x0E 64-bit long integer data
FLOAT64 0x0F 64-bit float point data

Byte 3: pointer
The register number of a register that contains a pointer (0 to 255).

Byte 4: count
An 8-bit value that specifies the number of data items to read from the pointer location (0 to 255).
If count = 0, the lower 16 bits of register 0 specify the number of data items to read from the
pointer location.

Special Cases: • if dataType is 32-bit floating point, and PICMODE is enabled, the values are converted from
IEEE-754 format before being sent

See Also: SETIND, ADDIND, WRIND, COPYIND, LOADIND, SAVEIND
SETREAD, FREAD, FREAD0, FREADA, FREADX, LREAD, LREAD0, LREADA,
LREADX, LREADBYTE, LREADWORD, DREAD

READSEL Read string selection

Syntax: READSEL

Description: Returns the current string selection. Data bytes must be read immediately following this
instruction and continue until a zero byte is read. This instruction is typically used after the
STRSEL or STRFIELD instructions.

Opcode: EC

Instruction Reference

Micromega Corporation 134 uM-FPU64 Instruction Set - Release 411

Returns: byte1...byteN
A zero-terminated string.

See Also: SETREAD, STRSET, STRSEL, STRINS, STRCMP, STRFIND, STRFCHR,
STRFIELD, STRINC, STRDEC, STRBYTE, STRTOF, STRTOL, FTOA, LTOA,
READSTR

READSTATUS Return the last status byte

Syntax: READSTATUS

Description: The 8-bit internal status byte is returned.

Opcode: F1

Returns: status
The status byte.

See Also: SETREAD, FSTATUS, FSTATUSA, LSTATUS, LSTATUSA, SETSTATUS

READSTR Read string

Syntax: READSTR

Description: Returns the zero terminated string in the string buffer. Data bytes must be read immediately
following this instruction and continue until a zero byte is read. This instruction is used after
instructions that load the string buffer (e.g. FTOA, LTOA, VERSION). On completion of the
READSTR instruction the string selection is set to select the entire string.

Opcode: F2

Returns: byte1...byteN
A zero-terminated string.

See Also: SETREAD, STRSET, STRSEL, STRINS, STRCMP, STRFIND, STRFCHR,
STRFIELD, STRINC, STRDEC, STRBYTE, STRTOF, STRTOL, FTOA, LTOA,
READSEL

READVAR Read internal variable

Syntax: READVAR,item

Description: Sets register 0 to the internal value selected by item.
0 Register A
1 Register X
2 Matrix A pointer
3 Matrix A rows
4 Matrix A columns
5 Matrix B pointer

Instruction Reference

Micromega Corporation 135 uM-FPU64 Instruction Set - Release 411

6 Matrix B rows
7 Matrix B columns
8 Matrix C pointer
9 Matrix C rows
10 Matrix C columns
11 Internal mode word
12 Last status byte
13 Clock ticks per millisecond
14 Current length of string buffer
15 String selection starting point
16 String selection length
17 8-bit character at string selection point
18 Number of bytes in instruction buffer
19 Silicon revision number
20 Device type (0x11 for 28-pin device, 0x12 for 44-pin device)
21 Number of Functions loaded in Flash
22 Number of XOP Instructions loaded in Flash
23 Error Status

if reg[A] is 32-bit, reg[0] = internal register value, status = longStatus(reg[0])
if reg[A] is 64-bit, reg[128] = internal register value, status = longStatus(reg[128])

Opcode: FC

Byte 2: item
Selects the internal value to load into register 0.

RESET Reset

Syntax: RESET

Description: Nine consecutive 0xFF bytes will cause the uM-FPU to reset. If less then nine consecutive 0xFF
bytes are received, they are treated as NOPs.

Opcode: FF

RET Return from user-defined function

Syntax: RET

Description: This instruction unconditionally returns from the current function. It restores the register A
selection to the value stored by FCALL. This instruction is only valid in user-defined function
stored in Flash memory.

Opcode: 80

Special Cases: • only valid inside user-defined functions stored in Flash memory.

See Also: FCALL, BRA, BRA,cc, GOTO, JMP, JMP,cc, RET, RET,cc

Instruction Reference

Micromega Corporation 136 uM-FPU64 Instruction Set - Release 411

RET, cc Conditional return from user-defined function

Syntax: RET,conditionCode

Description: If the condition is true, this instruction returns from the current function. If the condition is false,
no return occurs. It restores the register A selection to the value stored by FCALL. This instruction
is only valid in user-defined function stored in Flash memory.

Opcode: 8A

Byte 2: conditionCode
The list of condition codes is as follows:

IDE Symbol IDE Value Description
Z 0x51 Zero
EQ 0x51 Equal
NZ 0x50 Not Zero
NE 0x50 Not Equal
LT 0x72 Less Than
LE 0x62 Less Than or Equal
GT 0x70 Greater Than
GE 0x60 Greater Than or Equal
PZ 0x71 Positive Zero
MZ 0x73 Negative Zero
INF 0xC8 Infinity
FIN 0xC0 Finite
PINF 0xE8 Positive Infinity
MINF 0xEA Minus infinity
NAN 0x44 Not-a-Number (NaN)
TRUE 0x00 True
FALSE 0xFF False

This instruction is only valid in a user-defined function in Flash memory.

Special Cases: • only valid inside user-defined functions stored in Flash memory.

See Also: FCALL, BRA, BRA,cc, GOTO, JMP, JMP,cc, RET, RET,cc

RIGHT Right Parenthesis

Syntax: RIGHT

Description: If register A is 32-bit, the value of register A is loaded to register 0. If register A is 64-bit, the value
of register A is loaded to register 128. If the RIGHT parenthesis is the outermost parenthesis, the
register A selection from before the first LEFT parenthesis is restored, otherwise the previous
temporary register is selected as register. This is used together with the LEFT parenthesis
command to allocate temporary registers, and to change the order of a calculation. Parentheses can
be nested up to eight levels.

Instruction Reference

Micromega Corporation 137 uM-FPU64 Instruction Set - Release 411

Opcode: 15

Special Cases: • if no left parenthesis is currently outstanding, then register 0 (32-bit) or register 128 (64-bit) is
set to NaN.

Special Cases: • if SETARGS is used
• if reg[A] is 32-bit, the value is stored in registers 1 to 9
• if reg[A] is 64-bit, the value is stored in registers 129 to 137

See Also: LEFT, SETARGS

ROOT Calculate nth root

Syntax: ROOT,register

Description: Calculates the nth root of the floating point value in register A and stores the result in register A. It
is equivalent to raising register A to the power of (1 / n), where n is the floating point value in
register.

reg[A] = reg[A] ** (1 / reg[register])

Opcode: 42

Byte 2: register
Register number (0 to 255).

Special Cases: • if reg[A] is 32-bit and register is 64-bit, the value is converted to 32-bit before being used
• if reg[A] is 64-bit and register is 32-bit, the value is converted to 64-bit before being used
• see the description of the POWER instruction for the special cases of (1/reg[register])
• if reg[register] is infinity, then (1 / reg[register]) is zero
• if reg[register] is zero, then (1 / reg[register]) is infinity

See Also: FPOW, FPOWI, FPOW0, EXP, EXP10, LOG, LOG10, SQRT

ROUND Floating point Rounding

Syntax: ROUND

Description: The floating point value equal to the nearest integer to the floating point value in register A is
stored in register A.

reg[A] = round(reg[A])

Opcode: 53

Special Cases: • if the value is NaN, then the result is NaN
• if the value is +infinity or -infinity, then the result is +infinity or -infinity
• if the value is 0.0 or –0.0, then the result is 0.0 or –0.0

See Also: CEIL, FLOOR

Instruction Reference

Micromega Corporation 138 uM-FPU64 Instruction Set - Release 411

RTC Real-time Clock

Syntax: RTC,action {,register}

Description: Used to manage the real-time clock.

Opcode: DC

Byte 2: action

7 6 5 4 3 2 1 0Bit
Action Options

Bits 7:4 Action
IDE Symbol IDE Value Description
INIT 0x00 Initialize the real-time clock mode.
START 0x10 Start real-time clock.
STOP 0x20 Stop real-time clock.
ALARM_MASK 0x30 Set alarm mask.
WRITE_TIME 0x40 Write real-time clock date/time value.
WRITE_ALARM 0x50 Write alarm data/time value.
READ_TIME 0x60 Read real-time clock date/time value.
READ_ALARM 0x70 Read alarm date/time value.
NUM_TO_STR 0x80 Convert date/time number to string.
STR_TO_NUM 0x90 Convert date/time string to number.
NUM_TO_DATE 0xA0 Convert date/time number to values stored

in consecutive registers.
DATE_TO_NUM 0xB0 Convert values stored in consecutive

registers to date/time number.
Bits 3:0 Options

See descriptions below.

Initialize
RTC, INIT+options
Initialize the Real-time clock.

7 6 5 4 3 2 1 0Bit
0 SE C A

Bits 3 Enable RTCC output pin
IDE Symbol IDE Value Description
- 0x00 The RTC output pin is disabled.
RTCC 0x08 The RTC output pin is enabled.

Bits 2 Type of output
IDE Symbol IDE Value Description
ALARM_OUT 0x00 Toggle RTC on each alarm event.
HZ_OUT 0x04 One Hz output.

Bits 1 Calibration
IDE Symbol IDE Value Description
- 0x00 No Calibration.

Instruction Reference

Micromega Corporation 139 uM-FPU64 Instruction Set - Release 411

CAL 0x02 Set calibration from lower 8 bits of register
0.

Bits 0 Alarm Event
IDE Symbol IDE Value Description
- 0x00 Alarm event disabled.
ALARM_ON 0x00 Alarm event enabled.

Start and Stop the Real-time Clock
RTC, START+options
RTC, STOP+options
Start and stop the real-time clock.

7 6 5 4 3 2 1 0Bit
Action -

Set Alarm Mask
RTC, ALARM_MASK+options
Specify the alarm mask. The mask is used in combination with the alarm time to determine
when an alarm occurs. An alarm sets the RTC event flag and can optionally be output on the
RTCC pin. The RTC event can be used to trigger an action at a specific time, or schedule.

7 6 5 4 3 2 1 0Bit
Action Mask

Bits 3:0 Alarm Mask
Value Description

0 Alarm event every half second.
1 Alarm event every second.
2 Alarm event every 10 seconds.
3 Alarm event every minute.
4 Alarm event every 10 minutes.
5 Alarm event every hour.
6 Alarm event every day.
7 Alarm event every week.
8 Alarm event every month.
9 Alarm event every year.

Write Time, Write Alarm Time, Read Time, Read Alarm Time
RTC, WRITE_TIME+options
RTC, WRITE_ALARM+options
RTC, READ_TIME+options
RTC, READ_ALARM+options
Used to write and read the real time and alarm time values. The date and time value is read
into or written out to register 0 or the string buffer. The entire date and time or specific date
and time values can be selected.

7 6 5 4 3 2 1 0Bit
Action S Item

Bits 3 Numeric/String Select
IDE Symbol IDE Value Description
- 0x00 The numeric value in register 0 is used.

Instruction Reference

Micromega Corporation 140 uM-FPU64 Instruction Set - Release 411

STR 0x08 A string value is used. If the string selection
is not empty, the string selection is used,
otherwise the string buffer is used.

Bits 2:0 Item
IDE Symbol IDE Value Description
DATE_TIME 0x00 Year, Month, Day, Hour, Minute, Second.

Number:
The numbers of seconds since
2000-01-01 00:00:00

String:
YYYY-MM-DD HH:MM:SS

SECOND 0x01 Seconds. Number: 0 to 59
String: 00...59

MINUTE 0x02 Minutes. Number: 0 to 59
String: 00...59

HOUR 0x03 Hours. Number: 0 to 23
String: 00...23

DAY 0x04 Day. Number: 1 to 31
String: 01...31

MONTH 0x05 Month. Number: 1 to 12
String: 01...12

YEAR 0x06 Year. Number: 0 to 99
String: 2000...2099

WEEKDAY 0x07 Weekday.Number: 0 to 6
String: 0...6

Convert Date/Time Number to String
RTC, NUM_TO_STR+options
Converts the date and time value in register 0 to a string, and stores it in the string buffer. If
the string selection is not empty, the string selection is used, otherwise the string buffer is
used.

7 6 5 4 3 2 1 0Bit
Action Options

Bits 3:0 Item
IDE Symbol IDE Value Description
DATE_TIME 0x00 YYYY-MM-DD HH:MM:SS
DATE 0x01 YYYY-MM-DD
TIME 0x02 HH:MM:SS

Convert String to Date/Time Number
RTC, STR_TO_NUM+options
Converts the date and time string in the string buffer to a numeric value, and stores it in
register 0. If the string selection is not empty, the string selection is used, otherwise the string
buffer is used.

7 6 5 4 3 2 1 0Bit
Action Options

Bits 3:0 Item
IDE Symbol IDE Value Description
DATE_TIME 0x00 YYYY-MM-DD HH:MM:SS

Instruction Reference

Micromega Corporation 141 uM-FPU64 Instruction Set - Release 411

DATE 0x01 YYYY-MM-DD
TIME 0x02 HH:MM:SS

Convert Date/Time Number to Values stored in Consecutive Registers
RTC, NUM_TO_DATE, register
Converts the date and time number in register 0 to date and time values stored in seven
consecutive 32-bit registers, starting at the register specified. The values are stored as follows:

register second (0-59)
register+1 minute (0-59)
register+2 hour (0-23)
register+3 day (1-31)
register+4 month (1-12)
register+5 year (0-99)
register+6 weekday (0-6) 0 = Sunday

Convert Values stored in Consecutive Registers to Date/Time Number
RTC, DATE_TO_NUM, register
Converts the date and time values stored in seven consecutive 32-bit registers, starting at the
register specified, to a date and time number stored in register 0. The values are stored as
shown above.

The 32-bit integer date/time format is the numbers of seconds since 2000-01-01 00:00:00.

The string date/time format is:
YYYY-MM-DD HH:MM:SS

Examples: RTC, INIT+ALARM_ON Disable RTCC pin clock, no calibration, enable alarm events.
RTC, START Start the real-time clock.

See Also: TIMESET, TIMELONG, TICKLONG, DELAY

SAVEIND Save using Indirect Pointer

Syntax: SAVEIND,register

Description: The value of register A is stored at the indirect pointer specified by register. See the SETIND
instruction for a description of pointers.

data value pointed to by register = reg[A]

Opcode: 7B

Byte 2: register
Register number (0 to 255).

Special Cases: • if data value pointed to by register is 32-bit and reg[A] is 64-bit, the value is converted to 32-bit
before being saved
• if data value pointed to by register is 64-bit and reg[A] is 32-bit, the value is converted to 64-bit
before being used

Instruction Reference

Micromega Corporation 142 uM-FPU64 Instruction Set - Release 411

See Also: SETIND, ADDIND, WRIND, RDIND, COPYIND, LOADIND

SAVEMA Save register 0 value to matrix A

Syntax: SAVEMA,row,column

Description: Store the register 0 value to matrix A at the row, column specified. Additional information is
available in the Using the uM-FPU64 Matrix Instructions document.

if reg[A] is 32-bit, matrix A [row, column] = reg[0]
if reg[A] is 64-bit, matrix A [row, column] = reg[128]

Opcode: 6B

Byte 2: rows
If bit 7 = 0, bits 6:0 specify the row of the matrix.
If bit 7 = 1, bits 6:0 specify a register number, and the lower 8 bits of the register specify the row

of the matrix.
Byte 3: columns

If bit 7 = 0, bits 6:0 specify the column of the matrix.
If bit 7 = 1, bits 6:0 specify a register number, and the lower 8 bits of the register specify the

column of the matrix.

Special Cases: • if row or column is out of range, no value is stored in the matrix
• if reg[A] is 64-bit, the value from register 128 is converted to 32-bit before being stored

in the matrix

See Also: FFT, LOADMA, LOADMB, LOADMC, MOP, SAVEMB, SAVEMC, SELECTMA,
SELECTMB, SELECTMC

SAVEMB Save register 0 value to matrix B

Syntax: SAVEMB,row,column

Description: Store the register 0 value to matrix B at the row, column specified. Additional information is
available in the Using the uM-FPU64 Matrix Instructions document.

if reg[A] is 32-bit, matrix B [row, column] = reg[0]
if reg[A] is 64-bit, matrix B [row, column] = reg[128]

Opcode: 6C

Byte 2: rows
If bit 7 = 0, bits 6:0 specify the row of the matrix.
If bit 7 = 1, bits 6:0 specify a register number, and the lower 8 bits of the register specify the row

of the matrix.
Byte 3: columns

If bit 7 = 0, bits 6:0 specify the column of the matrix.
If bit 7 = 1, bits 6:0 specify a register number, and the lower 8 bits of the register specify the

column of the matrix.

Instruction Reference

Micromega Corporation 143 uM-FPU64 Instruction Set - Release 411

Special Cases: • if row or column is out of range, no value is stored in the matrix
• if register A is 64-bit, the value from register 128 is converted to 32-bit before being

stored in the matrix

See Also: LOADMA, LOADMB, LOADMC, MOP, SAVEMA, SAVEMC, SELECTMA, SELECTMB,
SELECTMC

SAVEMC Save register 0 value to matrix C

Syntax: SAVEMC,row,column

Description: Store the register 0 value to matrix C at the row, column specified. Additional information is
available in the Using the uM-FPU64 Matrix Instructions document.

if reg[A] is 32-bit, matrix C [row, column] = reg[0]
if reg[A] is 64-bit, matrix C [row, column] = reg[128]

Opcode: 6D

Byte 2: rows
If bit 7 = 0, bits 6:0 specify the row of the matrix.
If bit 7 = 1, bits 6:0 specify a register number, and the lower 8 bits of the register specify the row

of the matrix.
Byte 3: columns

If bit 7 = 0, bits 6:0 specify the column of the matrix.
If bit 7 = 1, bits 6:0 specify a register number, and the lower 8 bits of the register specify the

column of the matrix.

Special Cases: • if row or column is out of range, no value is stored in the matrix
• if reg[A] is 64-bit, the value from register 128 is converted to 32-bit before being stored

in the matrix

See Also: LOADMA, LOADMB, LOADMC, MOP, SAVEMA, SAVEMB, SELECTMA, SELECTMB,
SELECTMC

SELECTA Select A

Syntax: SELECTA,register

Description: The register specified is selected as register A.

A = register

Opcode: 01

Byte 2: register
Register number (0 to 255).

See Also: INDA, INDX, SELECTX

Instruction Reference

Micromega Corporation 144 uM-FPU64 Instruction Set - Release 411

SELECTMA Select matrix A

Syntax: SELECTMA,register,rows,columns

Description: The register specifies the start of matrix A, and size of the matrix in rows and columns. The matrix
is stored in sequential registers or RAM. If the matrix is stored in registers, register X is set to the
first element of the matrix so that the FREADX, FWRITEX, LREADX, LWRITEX, SAVEX,
SETX, LOADX instructions can be immediately used to store values to or retrieve values from the
matrix. Additional information is available in the Using the uM-FPU64 Matrix Instructions
document.

Select matrix A
if register matrix, X = register

Opcode: 65

Byte 2: register
If bit 7 = 0, bits 6:0 specify a register number for the start of the matrix (0 to 127).
If bit 7 = 1, bits 6:0 specify a register number, and the register contains an indirect pointer to the

start of the matrix.
Byte 3: rows

If bit 7 = 0, bits 6:0 specify the number of rows in matrix.
If bit 7 = 1, bits 6:0 specify a register number, and the lower 8 bits of the register specify the

number of rows in matrix.
Byte 4: columns

If bit 7 = 0, bits 6:0 specify the number of columns in matrix.
If bit 7 = 1, bits 6:0 specify a register number, and the lower 8 bits of the register specify the

number of columns in matrix.

Special Cases: • matrix operations are restricted to 32-bit floating point.
• indirect pointers must be used to select matrices in RAM.
• if matrix is too large for the available registers or RAM, a 1x1 matrix is defined and the

0,0 element is set to NaN.
• in a background process, a matrix that starts at register 0 to 15 must not extend beyond

register 15.
• in a background process, larger matrices should be defined using registers 16 to 127, or RAM.

See Also: FFT, LOADMA, LOADMB, LOADMC, MOP, SAVEMA, SAVEMB, SAVEMC,
SELECTMB, SELECTMC

SELECTMB Select matrix B

Syntax: SELECTMB,register,rows,columns

Description: The register specifies the start of matrix B, and size of the matrix in rows and columns. The matrix
is stored in sequential registers or RAM. If the matrix is stored in registers, register X is also set to
the first element of the matrix so that the FREADX, FWRITEX, LREADX, LWRITEX,
SAVEX, SETX, LOADX instructions can be immediately used to store values to or retrieve

Instruction Reference

Micromega Corporation 145 uM-FPU64 Instruction Set - Release 411

values from the matrix. Additional information is available in the Using the uM-FPU64 Matrix
Instructions document.

Select matrix B
if register matrix, X = register

Opcode: 66

Byte 2: register
If bit 7 = 0, bits 6:0 specify a register number for the start of the matrix (0 to 127).
If bit 7 = 1, bits 6:0 specify a register number, and the register contains an indirect pointer to the

start of the matrix.
Byte 3: rows

If bit 7 = 0, bits 6:0 specify the number of rows in matrix.
If bit 7 = 1, bits 6:0 specify a register number, and the lower 8 bits of the register specify the

number of rows in matrix.
Byte 4: columns

If bit 7 = 0, bits 6:0 specify the number of columns in matrix.
If bit 7 = 1, bits 6:0 specify a register number, and the lower 8 bits of the register specify the

number of columns in matrix.

Special Cases: • matrix operations are restricted to 32-bit floating point.
• indirect pointers must be used to select matrices in RAM.
• if an indirect pointer is a Flash pointer or the datatype is not Float32, the instruction is ignored.
• if matrix is too large for the available registers or RAM, a 1x1 matrix is defined and the

0,0 element is set to NaN.
• in a background process, a matrix that starts at register 0 to 15 must not extend beyond

register 15.
• in a background process, larger matrices should be defined using registers 16 to 127, or RAM.

See Also: LOADMA, LOADMB, LOADMC, MOP, SAVEMA, SAVEMC, SAVEMC, SELECTMB,
SELECTMC

SELECTMC Select matrix C

Syntax: SELECTMC,register,rows,columns

Description: The register specifies the start of matrix C, and size of the matrix in rows and columns. The matrix
is stored in sequential registers or RAM. If the matrix is stored in registers, register X is also set to
the first element of the matrix so that the FREADX, FWRITEX, LREADX, LWRITEX,
SAVEX, SETX, LOADX instructions can be immediately used to store values to or retrieve
values from the matrix. Additional information is available in the Using the uM-FPU64 Matrix
Instructions document.

Select matrix C
if register matrix, X = register

Opcode: 67
Byte 2: register

If bit 7 = 0, bits 6:0 specify a register number for the start of the matrix (0 to 127).

Instruction Reference

Micromega Corporation 146 uM-FPU64 Instruction Set - Release 411

If bit 7 = 1, bits 6:0 specify a register number, and the register contains an indirect pointer to the
start of the matrix.

Byte 3: rows
If bit 7 = 0, bits 6:0 specify the number of rows in matrix.
If bit 7 = 1, bits 6:0 specify a register number, and the lower 8 bits of the register specify the

number of rows in matrix.
Byte 4: columns

If bit 7 = 0, bits 6:0 specify the number of columns in matrix.
If bit 7 = 1, bits 6:0 specify a register number, and the lower 8 bits of the register specify the

number of columns in matrix.

Special Cases: • matrix operations are restricted to 32-bit floating point.
• indirect pointers must be used to select matrices in RAM.
• if an indirect pointer is a Flash pointer or the datatype is not Float32, the instruction is ignored.
• if matrix is too large for the available registers or RAM, a 1x1 matrix is defined and the

0,0 element is set to NaN.
• in a background process, a matrix that starts at register 0 to 15 must not extend beyond

register 15.
• in a background process, larger matrices should be defined using registers 16 to 127, or RAM.

See Also: LOADMA, LOADMB, LOADMC, MOP, SAVEMA, SAVEMB, SAVEMC, SELECTMB,
SELECTMC

SELECTX Select register X

Syntax: SELECTX,register

Description: The register specified is selected as the register X.

X = register

Opcode: 02

Byte 2: register
Register number (0 to 255).

See Also: INDA, INDX, SELECTA

SERIN Serial input

Syntax: SERIN,action

Description: This instruction is used to read serial data from the SERIN pin or one of the digital I/O pins.

If the debug monitor is enabled, and the SERIN pin is selected, the serial input is handled by the
debugger. The uM-FPU64 IDE can provide a terminal emulator, or simulate both character mode
and NMEA mode input.

SERIN, DISABLE
SERIN, ENABLE_CHAR

Instruction Reference

Micromega Corporation 147 uM-FPU64 Instruction Set - Release 411

SERIN, STATUS_CHAR
SERIN, READ_CHAR
SERIN, ENABLE_NMEA
SERIN, STATUS_NMEA
SERIN, READ_NMEA

Opcode: CF

Byte 2: action

7 6 5 4 3 2 1 0Bit
Device Action

Bit 7:4 Device
IDE Symbol IDE Value Description

- 0x00 SERIN pin
ASYNC 0x40 Digital I/O pin assigned by DEVIO,ASYNC

Bits 7:5 Action
IDE Symbol IDE Value Description
DISABLE 0x00 Disable serial input.
ENABLE_CHAR 0x01 Enable character mode input.
STATUS_CHAR 0x02 Get character mode input status.
READ_CHAR 0x03 Read character.
ENABLE_NMEA 0x04 Enable NMEA input.
STATUS_NMEA 0x05 Get NMEA input status.
READ_NMEA 0x06 Read NMEA sentence.

If the input pin is SERIN:
• the instruction is ignored if Debug Mode is enabled
• the baud rate for serial input is the same as the baud rate for serial

output, and is set with the SEROUT,0 instruction.

If the input pin is a digital I/O pin:
• the pin must first be initialized for serial input using the DEVIO,ASYNC instruction.
• the baud rate is specified using the DEVIO,ASYNC instruction

Disable Input (0x00, 0x40)
SERIN, DISABLE

Disable serial input. This can be used to save interrupt processing time if serial input is
not used continuously.

Enable Character Mode Input (0x01, 0x41)
SERIN, ENABLE_CHAR

Enable character mode serial input. Serial input is enabled, and incoming characters are
stored in a 160 byte buffer. The serial input status can be checked with the
SERIN,STATUS_CHAR instruction and input characters can be read using the
SERIN,READ_CHAR instruction.

Get Character Mode input Status (0x02, 0x42)
SERIN, STATUS_CHAR

Get character mode serial input status. The status byte is set to zero (Z) if the input buffer

Instruction Reference

Micromega Corporation 148 uM-FPU64 Instruction Set - Release 411

is empty, or non-zero (NZ) if the input buffer is not empty.

Read Character (0x03, 0x43)
SERIN, READ_CHAR

 Read next serial input character. The serial input character is stored in register 0. If this
instruction is the last instruction in the instruction buffer, it will wait for the next
available input character. It there are other instructions in the instruction buffer, or
another instruction is sent before the SERIN,READ_CHAR instruction has completed, it
will terminate and store a zero value in register 0.

Enable NMEA Input Mode (0x04, 0x44)
SERIN, ENABLE_NMEA

 Enable NMEA serial input. Serial input is enabled, and the serial input data is scanned
for NMEA sentences which are then stored in a 200 byte buffer. Additional NMEA
sentences can be buffered while the current sentence is being processed. The sentence
prefix character ($), trailing checksum characters (if specified), and the terminator
(CR,LF) are not stored in the buffer. NMEA sentences are transferred to the string buffer
for processing using the SERIN,READ_NMEA instruction, and the NMEA input status
can be checked with the SERIN,STATUS_NMEA instruction.

Read NMEA Input Status (0x05, 0x45)
SERIN, STATUS_NMEA

Get the NMEA input status. The status byte is set to zero (Z) if the buffer is empty, or
non-zero (NZ) if at least one NMEA sentence is available in the buffer.

Read NMEA Sentence (0x06, 0x46)
SERIN, READ_NMEA

Transfer next NMEA sentence to string buffer. This instruction transfers the next NMEA
sentence to the string buffer, and selects the first field of the string so that a STRCMP
instruction can be used to check the sentence type. If the sentence is valid, the status byte
is set to 0x80 and the greater-than (GT) test condition will be true. If an error occurs, the
status byte will be set to 0x82, 0x92, 0xA2, or 0xB2. Bit 4 of the status byte is set if an
overrun error occurred. Bit 5 of the status byte is set if a checksum error occurred. The
less-than (LT) test condition will be true for all errors. If this instruction is the last
instruction in the instruction buffer, it will wait for the next available NMEA sentence. It
there are other instructions in the instruction buffer, or another instruction is sent before
the SERIN,READ_NMEA instruction has completed, it will terminate and store an empty
sentence.

Examples:
SERIN, ENABLE_CHAR Enable character input on SERIN pin.
SERIN, ASYNC+ENABLE_CHAR Enable character input on DEVIO,ASYNC pin.
SERIN, READ_CHAR Read the next character received on the SERIN pin and

store the value in register 0.
See Also: DEVIO,ASYNC, SEROUT

SEROUT Serial Output

Syntax: SEROUT,action{,mode}|{,string}

Instruction Reference

Micromega Corporation 149 uM-FPU64 Instruction Set - Release 411

Description: This instruction is used to enable and disable Debug Mode, set the baud rate for the SERIN and
SEROUT pins, and to write serial data to the SEROUT pin or one of the digital I/O pins.

A secondary use for this instruction is for data logging. Data channels 1-3 are provided for this
purpose. If the debug monitor is enabled, and the SEROUT pin or data channels 1-3 are selected,
the serial output is sent to the debugger. This information is handled by the uM-FPU64 IDE and
can be displayed in a terminal emulator, as a text log, or as a table and graph. If the debugger is
not enabled, output to data channels 1-3 is suppressed.

SEROUT, SET_BAUD, mode
SEROUT, WRITE_STR, string
SEROUT, WRITE_SBUF
SEROUT, WRITE_SSEL
SEROUT, WRITE_CHAR
SEROUT, WRITE_STRZ, string
SEROUT, WRITE_FLOAT, register, format
SEROUT, WRITE_LONG, register, format
SEROUT, WRITE_COMMA
SEROUT, WRITE_CRLF

Opcode: CE

Byte 2: action

7 6 5 4 3 2 1 0Bit
Device Action

Bit 7:4 Device
IDE Symbol IDE Value Description
- 0x00 SEROUT pin
IDE1 0x10 Debug mode, data channel 1
IDE2 0x20 Debug mode, data channel 2
IDE3 0x30 Debug mode, data channel 3
ASYNC 0x40 Digital I/O pin assigned by DEVIO,ASYNC

Bits 7:5 Action
IDE Symbol IDE Value Description
SET_BAUD 0x00 Set baud rate and debug mode.
WRITE_STR 0x01 Write string.
WRITE_SBUF 0x02 Write string buffer.
WRITE_SSEL 0x03 Write string selection.
WRITE_CHAR 0x04 Write character.
WRITE_STRZ 0x05 Write string and zero terminator.
WRITE_FLOAT 0x06 Write floating point value.
WRITE_LONG 0x07 Write long integer value.
WRITE_COMMA 0x08 Write comma.
WRITE_CRLF 0x09 Write carriage return, linefeed.

If the output pin is SEROUT:
• the instruction is ignored if Debug Mode is enabled
• the baud rate for serial output is set with the SEROUT,0 instruction.

Instruction Reference

Micromega Corporation 150 uM-FPU64 Instruction Set - Release 411

If the output pin is a digital I/O pin:
• the pin must first be initialized for serial output using the DEVIO instruction.
• the baud rate is specified using the DEVIO instruction

Set Baud Rate and Debug Mode (0x00, 0x10, 0x20, 0x30, 0x40)
SEROUT, SET_BAUD, mode

This instruction sets the baud rate for the SERIN and SEROUT pins, and enables or
disables Debug Mode. The mode is specified by the byte immediately following the
opcode and action byte.

Byte 3: mode
Value Description

0 57,600 baud, Debug Mode enabled
1 300 baud, Debug Mode disabled
2 600 baud, Debug Mode disabled
3 1200 baud, Debug Mode disabled
4 2400 baud, Debug Mode disabled
5 4800 baud, Debug Mode disabled
6 9600 baud, Debug Mode disabled
7 19200 baud, Debug Mode disabled
8 38400 baud, Debug Mode disabled
9 57600 baud, Debug Mode disabled

10 115200 baud, Debug Mode disabled

If the serial output pin is SEROUT (ASYNC0), the baud rate and debug mode is set according
to the value. If the mode value is 0, a {DEBUG ON} message is sent to the serial output and
the baud rate is changed. If the mode value is 1 through 10, if the debug mode is enabled, and
a {DEBUG OFF} message is sent to the SEROUT before the baud rate is changed.

If the serial output pin is a digital I/O pin (ASYNC1), the SET_BAUD instruction is ignored.
The serial port must be initialized with the DEVIO,INIT instruction.

Write String (0x01, 0x11, 0x21 0x31, 0x41)
SEROUT, WRITE_STR, string

The zero-terminated text string specified by the instruction (not including the zero-
terminator) is sent to the serial output. The instruction is ignored if Debug Mode is
enabled. If string length > 127, string will be truncated to 127 characters.

Write String Buffer (0x02, 0x12, 0x22, 0x32, 0x42)
SEROUT, WRITE_SBUF

The contents of the string buffer are sent to the serial output. The instruction is ignored if
Debug Mode is enabled.

Write String Selection (0x03, 0x13, 0x23, 0x33, 0x43)
SEROUT, WRITE_SSEL

The current string selection is sent to the serial output. The instruction is ignored if
Debug Mode is enabled.

Write Character (0x04, 0x14, 0x24, 0x34, 0x44)
SEROUT, WRITE_CHAR

Instruction Reference

Micromega Corporation 151 uM-FPU64 Instruction Set - Release 411

The lower 8 bits of register 0 are sent to the serial output as an 8-bit character. The
instruction is ignored if Debug Mode is enabled.

Write String and Zero-Terminator (0x05, 0x15, 0x25, 0x35, 0x45)
SEROUT, WRITE_STRZ, string

The zero-terminated text string specified by the instruction is sent to the serial output,
including the zero-terminator. The instruction is ignored if Debug Mode is enabled.

Write Float (0x06, 0x16, 0x26, 0x36, 0x46)
SEROUT, WRITE_FLOAT, register, format

The value in register is converted to a floating point string using the format specified and
sent to the serial output.

Byte 3: register
Register number (0-255).

Byte 4: format
Conversion format (see FTOA instruction).

Write Long (0x07, 0x17, 0x27, 0x37, 0x47)
SEROUT, WRITE_LONG, register, format

The value in register is converted to a long integer string using the format specified and
sent to the serial output.

Byte 3: register
Register number (0-255).

Byte 4: format
Conversion format (see LTOA instruction).

Write Comma (0x08, 0x18, 0x28, 0x38, 0x48)
SEROUT, WRITE_COMMA

A comma is sent to the serial output.

Write Carriage Return, Linefeed (0x09, 0x19, 0x29, 0x39, 0x49)
SEROUT, WRITE_CRLF

A carriage return and linefeed is sent to the serial output.

Examples:
SEROUT, ENABLE_CHAR Enable character input on SERIN pin.
SEROUT, ASYNC+ENABLE_CHAR Enable character input on DEVIO,ASYNC pin.
SEROUT, READ_CHAR Read the next character received on the SERIN pin and

store the value in register 0.
See Also: DEVIO,ASYNC, SERIN

SETARGS Enable FCALL argument loading

Syntax: SETARGS

Description: The SETARGS instruction is used to facilitate the passing of arguments to a user-defined function.
After a SETARGS instruction, instructions that normally load values to register 0, will instead load

Instruction Reference

Micromega Corporation 152 uM-FPU64 Instruction Set - Release 411

values sequentially into registers 1 to 9, if register A is a 32-bit register, or registers 129-137, if
register A is a 64-bit register. The register A selection is saved by the first SETARGS instruction.
Each additional SETARGS before the next FCALL will toggle between 32-bit and 64-bit argument
loading by toggled the register A selection between register 0 and register 128. Argument loading
is disabled by the next FCALL instruction.

Opcode: DD

See Also: CLR, CLR0, DWRITE, FWRITE, FWRITE0, LOAD, LOADA, LOADX, LOADBYTE,
LOADE, LOADIND, LOADPI, LOADUBYTE, LOADUWORD, LOADWORD, LONGBYTE,
LONGUBYTE, LONGUWORD, LONGWORD, LWRITE, LWRITE0, RIGHT

SETIND Set indirect pointer

Syntax: SETIND,type,register
SETIND,type,address
SETIND,type,function,offset

Description: Register 0 or 128 is set to the value of an indirect pointer. Indirect pointers can point to registers or
memory. If type specifies a register pointer, the pointer will point to the register specified. If type
specifies a memory or DMA pointer, the pointer will point to the specified memory address. If type
specifies a Flash pointer, the pointer will point to Flash data in the specified function and offset.

if reg[A] is 32-bit,
reg[0] = indirect pointer

if reg[A] is 64-bit,
reg[0] = indirect pointer

Opcode: 77

Byte 2: type
This type is stored in the type field of the indirect pointer.

-
7 6 5 4 3 2 1 0Bit

Data TypeA
Bits 7 Auto Increment

IDE Symbol IDE Value Description
INC 0x80 Auto-increment the pointer

Bits 5:0 Data Type
IDE Symbol IDE Value Description
REG_LONG 0x00 Register, Long integer data
REG_FLOAT 0x01 Register, Floating point data
MEM_INT8 0x08 Memory, 8-bit signed integer data
MEM_UINT8 0x09 Memory, 8-bit unsigned integer data
MEM_INT16 0x0A Memory, 16-bit signed integer data
MEM_UINT16 0x0B Memory, 16-bit unsigned integer data
MEM_LONG32 0x0C Memory, 32-bit long integer data
MEM_FLOAT32 0x0D Memory, 32-bit floating point data
MEM_LONG64 0x0E Memory, 64-bit long integer data
MEM_FLOAT64 0x0F Memory, 64-bit floating point data

Instruction Reference

Micromega Corporation 153 uM-FPU64 Instruction Set - Release 411

DMA_INT8 0x18 DMA, 8-bit signed integer data
DMA_UINT8 0x19 DMA, 8-bit unsigned integer data
DMA_INT16 0x1A DMA, 16-bit signed integer data
DMA_UINT16 0x1B DMA, 16-bit unsigned integer data
DMA_LONG32 0x1C DMA, 32-bit long integer data
DMA_FLOAT32 0x1D DMA, 32-bit floating point data
DMA_LONG64 0x1E DMA, 64-bit long integer data
DMA_FLOAT64 0x1F DMA, 64-bit floating point data
FLASH_INT8 0x28 Flash, 8-bit signed integer data
FLASH__UINT8 0x29 Flash, 8-bit unsigned integer data
FLASH__INT16 0x2A Flash, 16-bit signed integer data
FLASH__UINT16 0x2B Flash, 16-bit unsigned integer data
FLASH__LONG32 0x2C Flash, 32-bit long integer data
FLASH__FLOAT32 0x2D Flash, 32-bit floating point data
FLASH__LONG64 0x2E Flash, 64-bit long integer data
FLASH__FLOAT64 0x2F Flash, 64-bit floating point data

Register Pointer

Byte 3: register
Register number (0 to 255). This value is stored in the address field of the indirect pointer.

Memory or DMA Pointer

Byte 3-4: address
A 16-bit value the specifies the memory address (0 to 65535). This value is stored in the
address field of the indirect pointer.

Flash Pointer

Byte 3: function
Function number (0 to 63). This value is stored in the upper 8 bits of the indirect pointer
address field.

Byte 4-5: offset
A 16-bit value the specifies the memory address (0 to 65535). This value is stored in the lower
16 bits of the indirect pointer address field.

Notes:
The indirect pointer stored in Register A has the following format:

Type
31 24 23 16Bit

Address

15 0Bit
Address

Special Cases: • if reg[A] is 64-bit, the upper 32 bits of reg[128] are set to zero.

See Also: ADDIND, COPYIND, LOADIND, RDIND, SAVEIND, WRIND

Instruction Reference

Micromega Corporation 154 uM-FPU64 Instruction Set - Release 411

SETREAD Set Read Mode

Syntax: SETREAD

Description: This instruction should be used by the foreground process prior to any read instruction. It ensures
that the FPU stays in foreground mode, and is ready to send data when the read instruction is
received from the microcontroller. Background processes will not run until the next read
instruction has finished executing.

Opcode: FD

See Also: FREAD, FREADA, FREADX, FREAD0, LREAD, LREADA, LREADX, LREAD0,
LREADBYTE, LREADWORD, DREAD, RDIND, READSTR, READSEL, READSTATUS

SETSTATUS Set status byte

Syntax: SETSTATUS,status

Description: The internal status byte is set to the 8-bit value specified.

status = status

Opcode: CD

Byte 2: status
The 8-bit value to store as the internal status value.

See Also: SETREAD, FSTATUS, FSTATUSA, LSTATUS, LSTATUSA, SETSTATUS

SIN Sine

Syntax: SIN

Description: Calculates the sine of the angle (in radians) in register A and stores the result in register A.

reg[A] = sin(reg[A])

Opcode: 47

Special Cases: • if A is NaN or an infinity, then the result is NaN
• if A is 0.0, then the result is 0.0
• if A is –0.0, then the result is –0.0

See Also: ACOS, ASIN, ATAN, ATAN2, COS, TAN, DEGREES, RADIANS

SQRT Square root

Syntax: SQRT

Instruction Reference

Micromega Corporation 155 uM-FPU64 Instruction Set - Release 411

Description: Calculates the square root of the floating point value in register A and stores the result in register
A.

reg[A] = sqrt(reg[A])

Opcode: 41

Special Cases: • if the value is NaN or less than zero, then the result is NaN
• if the value is +infinity, then the result is +infinity
• if the value is 0.0 or –0.0, then the result is 0.0 or –0.0

See Also: FPOW, FPOWI, FPOW0, EXP, EXP10, LOG, LOG10, ROOT

STRBYTE Insert byte at string selection

Syntax: STRBYTE

Description: If register A is 32-bit, the lower 8 bits of register 0 are stored as an 8-bit character in the string
buffer at the current selection point. If register A is 64-bit, the lower 8 bits of register 128 are
stored as an 8-bit character in the string buffer at the current selection point. The selection point is
updated to point immediately after the stored byte, so multiple bytes can be appended.

Opcode: ED

See Also: STRSET, STRSEL, STRINS, STRCMP, STRFIND, STRFCHR, STRFIELD,
STRINC, STRDEC, STRTOF, STRTOL, FTOA, LTOA, READSTR, READSEL

STRCMP Compare string with string selection

Syntax: STRCMP,string

Description: The string is compared with the string at the current selection point of the string buffer and the
internal status byte is set.

status = longStatus of string compare

The status byte can be read with the READSTATUS instruction. It is set as follows:

1 - - - - S

7 6 5 4 3 2 1 0Bit

- Z
Bit 1 Sign Set if string selection < specified string
Bit 0 Zero Set if string selection = specified string

If neither Bit 0 or Bit 1 is set, string selection > specified string

Opcode: E6

Bytes 2-n: string
A zero-terminated string.

Special Cases: • if string length > 127, string will be truncated to 127 characters

Instruction Reference

Micromega Corporation 156 uM-FPU64 Instruction Set - Release 411

See Also: STRSET, STRSEL, STRINS, STRFIND, STRFCHR, STRFIELD, STRINC,
STRDEC, STRBYTE, STRTOF, STRTOL, FTOA, LTOA, READSTR, READSEL

STRDEC Decrement string selection point

Syntax: STRDEC

Description: The string selection point is incremented and the selection length is set to zero.

Opcode: EF

Special Cases: • the selection point will not decrement past the beginning of the string

See Also: STRSET, STRSEL, STRINS, STRCMP, STRFIND, STRFCHR, STRFIELD,
STRINC, STRBYTE, STRTOF, STRTOL, FTOA, LTOA, READSTR, READSEL

STRFCHR Set field separator characters

Syntax: STRFCHR,string

Description: The string specifies a list of characters (maximum of six) to be used as field separators by the
STRFIELD instruction. The default field separator is a comma.

Opcode: E8

Bytes 2-n: string
A zero-terminated string.

See Also: STRSET, STRSEL, STRINS, STRCMP, STRFIND, STRFIELD, STRINC,
STRDEC, STRBYTE, STRTOF, STRTOL, FTOA, LTOA, READSTR, READSEL

STRFIELD Find field in string

Syntax: STRFIELD,field

Description: The selection point is set to the specified field. Fields are numbered from 1 to n, and are separated
by the characters specified by the last STRFCHR instruction. If no STRFCHR instruction has been
executed, the default field separator is a comma.

Opcode: E9

Byte 2: field
If bit 7 = 0, bits 6:0 specify the field.
If bit 7 = 1, bits 6:0 specify a register number, and the lower 8 bits of the register

specify the field.

Special Cases: • if field = 0, selection point is set to the start of the string buffer
• if field > number of fields, selection point is set to the end of the string buffer

Instruction Reference

Micromega Corporation 157 uM-FPU64 Instruction Set - Release 411

See Also: STRSET, STRSEL, STRINS, STRCMP, STRFIND, STRFCHR, STRINC, STRDEC,
STRBYTE, STRTOF, STRTOL, FTOA, LTOA, READSTR, READSEL

STRFIND Find string in the string buffer

Syntax: STRFIND,string

Description: Search the current string selection in the string buffer for the first occurrence of the specified
string. If the string is found, the selection point is set to the matching substring. If the string is not
found, the selection point is set to the end of the current string selection.

Opcode: E7

Bytes 2-n: string
A zero-terminated string.

Special Cases: • if string length > 127, string will be truncated to 127 characters

See Also: STRSET, STRSEL, STRINS, STRCMP, STRFCHR, STRFIELD, STRINC,
STRDEC, STRBYTE, STRTOF, STRTOL, FTOA, LTOA, READSTR, READSEL

STRINC Increment string selection point

Syntax: STRINC

Description: The string selection point is incremented and the selection length is set to zero.

Opcode: EE

Special Cases: • the selection point will not increment past the end of the string

See Also: STRSET, STRSEL, STRINS, STRCMP, STRFIND, STRFCHR, STRFIELD,
STRDEC, STRBYTE, STRTOF, STRTOL, FTOA, LTOA, READSTR, READSEL

STRINS Insert string

Syntax: STRINS,string

Description: Insert the string in the string buffer at the current selection point. The selection point is updated to
point immediately after the inserted string, so multiple insertions can be appended.

Opcode: E5

Bytes 2-n: string
A zero-terminated string.

Special Cases: • if string length > 127, string will be truncated to 127 characters

Instruction Reference

Micromega Corporation 158 uM-FPU64 Instruction Set - Release 411

See Also: STRSET, STRSEL, STRCMP, STRFIND, STRFCHR, STRFIELD, STRINC,
STRDEC, STRBYTE, STRTOF, STRTOL, FTOA, LTOA, READSTR, READSEL

STRSEL Set string selection point

Syntax: STRSEL,start,length

Description: Set the start of the string selection to character start and the length of the selection to length
characters. Characters are numbered from 0 to n.

Opcode: E4

Byte 2: start
If bit 7 = 0, bits 6:0 specify the start of the string selection.
If bit 7 = 1, bits 6:0 specify a register number, and the lower 8 bits of the register specify the start

of the string selection.
Byte 3: length

If bit 7 = 0, bits 6:0 specify the length of the string selection.
If bit 7 = 1, bits 6:0 specify a register number, and the lower 8 bits of the register specify the

length of the string selection.

Special Cases: • if start > string length, start of selection is set to end of string
• if start+length > string length, selection is adjusted for the end of string

See Also: STRSET, STRINS, STRCMP, STRFIND, STRFCHR, STRFIELD, STRINC,
STRDEC, STRBYTE, STRTOF, STRTOL, FTOA, LTOA, READSTR, READSEL

STRSET Copy string to string buffer

Syntax: STRSET,string

Description: Copy the string to the string buffer and set the selection point to the end of the string buffer.

Opcode: E3

Bytes 2-n: string
A zero-terminated string.

Special Cases: • if string length > 127, string will be truncated to 127 characters

See Also: STRSEL, STRINS, STRCMP, STRFIND, STRFCHR, STRFIELD, STRINC,
STRDEC, STRBYTE, STRTOF, STRTOL, FTOA, LTOA, READSTR, READSEL

STRTOF Convert string selection to floating point

Syntax: STRTOF

Description: Convert the string at the current selection point to a floating point value. If register A is 32-bit, the

Instruction Reference

Micromega Corporation 159 uM-FPU64 Instruction Set - Release 411

result is stored in register 0. If register A is 64-bit, the result is stored in register 128.

Opcode: EA

See Also: STRSET, STRSEL, STRINS, STRCMP, STRFIND, STRFCHR, STRFIELD,
STRINC, STRDEC, STRBYTE, STRTOL, FTOA, LTOA, READSTR, READSEL

STRTOL Convert string selection to long integer

Syntax: STRTOL

Description: Convert the string at the current selection point to a long integer value. If register A is 32-bit, the
result is stored in register 0. If register A is 64-bit, the result is stored in register 128.

Opcode: EB

See Also: STRSET, STRSEL, STRINS, STRCMP, STRFIND, STRFCHR, STRFIELD,
STRINC, STRDEC, STRBYTE, STRTOF, FTOA, LTOA, READSTR, READSEL

SWAP Swap registers

Syntax: SWAP,register1,register2

Description: The values of register1 and register2 are swapped.

tmp = reg[register1], reg[register1] = reg[register2], reg[register2] = tmp

Opcode: 12

Byte 2: register1
Register number (0 to 255).

Byte 3: register2
Register number (0 to 255).

Special Cases: • if register2 is 32-bit and register1 is 64-bit, only the lower 32-bits of register1 are copied and the
upper 32-bits of register1 are set to zero
• if register2 is 64-bit and register1 is 32-bit, only the lower 32-bits of register2 are copied and the
upper 32-bits of register2 are set to zero

See Also: SWAPA

SWAPA Swap register A

Syntax: SWAPA,register

Description: The values of register and register A are swapped.

tmp = reg[register], reg[register] = reg[A], reg[A] = tmp

Instruction Reference

Micromega Corporation 160 uM-FPU64 Instruction Set - Release 411

Opcode: 13

Byte 2: register
Register number (0 to 255).

Special Cases: • if reg[A] is 32-bit and register is 64-bit, only the lower 32-bits of register are copied and the
upper 32-bits of register are set to zero
• if register is 64-bit and reg[A] is 32-bit, only the lower 32-bits of reg[A] are copied and the
upper 32-bits of reg[A] are set to zero

See Also: SWAP

SYNC Synchronization

Syntax: SYNC

Description: A sync character (0x5C) is sent in reply. This instruction is typically used after a reset to verify
communications.

Opcode: F0

Returns: 5C

TABLE Table lookup

Syntax: TABLE,tableSize,tableItem1...tableItemN

Description: This opcode is only valid within a user function stored in the uM-FPU64 Flash memory. The value
of the item in the 32-bit table, indexed by register 0, is stored in register A. The first byte after the
opcode specifies the size of the table, followed by groups of four bytes representing the 32-bit
values for each item in the table. This instruction can be used to load either floating point values or
long integer values. The long integer value in register 0 is used as an index into the table. The
index number for the first table entry is zero.

reg[0] = value from table indexed by reg[0]
if reg[A] is 32-bit, reg[0] = value from table indexed by reg[0]
if reg[A] is 64-bit, reg[128] = value from table indexed by lower 32-bits of reg[128]

Opcode: 85

Byte 2: tableSize
Specifies the number of 32-bit values in the table (0-255). If tableSize is 0, the number of 32-bit
values in the table is 256.

Bytes 3-n: TableItem1...TableItemN
32-bit integer values or 32-bit floating point values

Special Cases: • only valid inside user-defined functions stored in Flash memory.
• if the number of table entries doesn’t match the table size, the instruction is ignored.

Instruction Reference

Micromega Corporation 161 uM-FPU64 Instruction Set - Release 411

• if reg[0 | 128] <= 0, then zero is returned.
• if reg[0 | 128] > maximum size of table, then zero is returned.
• if reg[A] is 64-bit, the lower 32-bit are set to the value in the table and the upper 32-bits are zero.

See Also: FTABLE, LTABLE, POLY

TAN Tangent

Syntax: TAN

Description: Calculates the tangent of the angle (in radians) in register A and stores the result in register A.

reg[A] = tan(reg[A])

Opcode: 49

Special Cases: • if reg[A] is NaN or an infinity, then the result is NaN
• if reg[A] is 0.0, then the result is 0.0
• if reg[A] is –0.0, then the result is –0.0

See Also: ACOS, ASIN, ATAN, ATAN2, COS, SIN, DEGREES, RADIANS

TICKLONG Load register 0 with millisecond or microsecond ticks

Syntax: TICKLONG

Description: Load register 0 (32-bit) with the time in milliseconds, or register 128 (64-bit) with the time in
microseconds.

if reg[A] is 32-bit, reg[0] = ticks in milliseconds, status = longStatus(reg[0])
if reg[A] is 64-bit, reg[128] = ticks in microseconds, status = longStatus(reg[128])

Opcode: D9

Special Cases: • if reg[A] is 64-bit, then upper 32-bits are set to zero

See Also: TIMESET, TIMELONG, RTC, DELAY

TIMELONG Load register 0 with time value in seconds

Syntax: TIMELONG

Description: Load register 0 (32-bit) or register 128 (64-bit) with the time in seconds.

if reg[A] is 32-bit, reg[0] = time in seconds, status = longStatus(reg[0])
if reg[A] is 64-bit, reg[128] = time in seconds, status = longStatus(reg[128])

Opcode: D8

Instruction Reference

Micromega Corporation 162 uM-FPU64 Instruction Set - Release 411

Special Cases: • if reg[A] is 64-bit, then upper 32-bits are set to zero

See Also: TIMESET, TICKLONG, RTC, DELAY

TIMESET Set time value in seconds

Syntax: TIMESET

Description: The time in seconds is set from the value in register 0 (32-bit) or register 128 (64-bit). If the value
in register 0 or 128 is -1, the timer is disabled.

if reg[A] is 32-bit, time in seconds = reg[0], ticks = time in milliseconds
if reg[A] is 64-bit, time in seconds = reg[128], ticks = time in microseconds

Opcode: D7

Special Cases: • if reg[0 | 128] is -1, the timer is turned off.

See Also: TIMELONG, TICKLONG, RTC, DELAY

TRACEOFF Turn debug trace off

Syntax: TRACEOFF

Description: Used with the built-in debugger. If the debugger is not enabled, this instruction is ignored. Debug
tracing is turned off, and a {TOFF} message is sent to the serial output.

Opcode: F8

See Also: TRACEON, TRACEREG, TRACESTR, BREAK

TRACEON Turn debug trace on

Syntax: TRACEON

Description: Used with the built-in debugger. If the debugger is not enabled, this instruction is ignored. Debug
tracing is turned on, and a {TON,level, function, offset} message is sent to the serial output. The
debug terminal will display a trace of all instructions executed until tracing is turned off.

Opcode: F9

See Also: TRACEOFF, TRACEREG, TRACESTR, BREAK

TRACEREG Display register value in debug trace

Syntax: TRACEREG,register

Description: Used with the built-in debugger. If the debugger is not enabled, this instruction is ignored. If the
debugger is enabled, the value of register will be displayed on the debug terminal as follows:

32-bit register: {R1:3F800000}

Instruction Reference

Micromega Corporation 163 uM-FPU64 Instruction Set - Release 411

64-bit register: {R129:3FF0000000000000}

Opcode: FB

Byte 2: register
Register number (0 to 255).

See Also: TRACEOFF, TRACEON, TRACESTR, BREAK

TRACESTR Display debug trace message

Syntax: TRACESTR,string

Description: Used with the built-in debugger. If the debugger is not enabled, this instruction is ignored. If the
debugger is enabled, the string will be displayed on the debug terminal. If the string is of the form
$Rxx, a READVAR value is output as a hexadecimal string, where xx is the decimal value of the
READVAR value.

Opcode: FA

Bytes 2-n: string
A zero-terminated string.

Examples: TRACESTR, "test" sends {“test”} to debug terminal
TRACESTR, "$R14" sends {“$R14”:0000} to debug terminal (READVAR, 14 value)

See Also: TRACEOFF, TRACEON, TRACEREG, BREAK

VERSION Copy the version string to the string buffer

Syntax: VERSION

Description: The uM-FPU64 version string is copied to the string buffer at the current selection point, and the
version code is copied to register 0. The version code is represented as follows:

7 6 5 4 3 2 1 0
BetaMinor

15 14 13 12 11 10 9 8Bit
Major4

Bits 15:12 Chip Version (always set to 4)
Bits 11:8 Major Version
Bits 7:4 Minor Version
Bits 3:0 Beta Version

As an example:
version string: uM-FPU64 r402
version code: 0x4100

Opcode: F3

Instruction Reference

Micromega Corporation 164 uM-FPU64 Instruction Set - Release 411

WRIND Write data using indirect pointer

Syntax: WRIND,dataType,pointer,count,value1...valueN

Description: Write count data values of the specified dataType to the pointer location. If count = 0, then the
count is loaded from the lower 16 bits of register 0. The pointer can be a register pointer or a
memory pointer. If dataType is different then the data type of the pointer data conversion is
automatically performed. See the SETIND instruction for a description of pointers.
The WRIND instruction has been optimized for 32-bit transfers of the same data type (e.g. long-to
-long or float-to-float). These transfers can be done at the maximum transfer rate without filling the
instruction buffer. Transfers that require data conversions may require an additional delay between
data transfers to avoid exceeding the 256 byte FPU instruction buffer.

Opcode: 70

Byte 2: dataType

-
7 6 5 4 3 2 1 0Bit

Data Type

Bits 3:0 Data Type
IDE Symbol IDE Value Description

INT8 0x08 8-bit signed integer data
UINT8 0x09 8-bit unsigned integer data
INT16 0x0A 16-bit signed integer data
UINT16 0x0B 16-bit unsigned integer data
LONG32 0x0C 32-bit long integer data
FLOAT32 0x0D 32-bit floating point data
LONG64 0x0E 64-bit long integer data
FLOAT64 0x0F 64-bit float point data

Byte 3: pointer
The register number of a register that contains a pointer (0 to 255).

Byte 4: count
An 8-bit value that specifies the number of data items to read from the pointer location (0 to 255).
If count = 0, the lower 16 bits of register 0 specify the number of data items to read from the
pointer location.

Bytes 5-n: value1...valueN
Data values of the type specified by dataType.

Special Cases: • if dataType is 32-bit floating point, and PICMODE is enabled, the values are converted to
IEEE-754 format before being stored

See Also: SETIND, ADDIND, RDIND, COPYIND, LOADIND, SAVEIND
FWRITE, FWRITE0, FWRITEA, FWRITEX, LWRITE, LWRITE0, LWRITEA,
LWRITEX, DWRITE

Instruction Reference

Micromega Corporation 165 uM-FPU64 Instruction Set - Release 411

XOP Execute extended opcode instruction stored in Flash memory

Syntax: XOP, xop_number, arg1, arg2, arg2

Description: Executes the extended opcode instruction specified by xop_number, using arguments arg1, arg2,
arg3. The value of the arguments depends on the XOP instruction. Separate documentation for
XOP library files specify the arguments required for each XOP. All XOP instructions have three
argument bytes. If an XOP requires fewer than three arguments, zero bytes are used as fillers.

The uM-FPU64 IDE software is used to load the code for XOP instructions into Flash memory.

Opcode: FE

Byte 2: xop_number
An 8-bit value specifying the XOP number which is used to determine the location of the XOP ode
programmed in Flash memory.

Byte 3: arg1
An 8-bit value used as the first argument for the XOP instruction.

Byte 4: arg2
An 8-bit value used as the second argument for the XOP instruction.

Byte 5: arg3
An 8-bit value used as the third argument for the XOP instruction.

Examples:
ASM: XOP, 01, 10, 20, 30 ; call XOP 1 with arguments 10, 20, and 30

Compiler: qa[4] equ F%
qb[4] equ F%
qc[4] equ F%
q_add(qa, qb, qc) ; call XOP q_add with quaternions qa, qb, qc

XSAVE Save register value to register X

Syntax: XSAVE,register

Description: Set register X to the value of register, and select the next register in sequence as register X.

reg[X] = reg[register], status = longStatus(reg[X]), X = X + 1

Opcode: 0E

Byte 2: register
Register number (0 to 255).

Special Cases: • if register is 32-bit and reg[X] is 64-bit, the upper 32-bits of reg[X] are set to zero

Instruction Reference

Micromega Corporation 166 uM-FPU64 Instruction Set - Release 411

• if register is 64-bit and reg[X] is 32-bit, only the lower 32-bits of register are copied
• if reg[X] is 32-bit, it will not increment past register 127
• if reg[X] is 64-bit, it will not increment past register 255

See Also: LOAD, LOADA, LOADX, ALOADX, XSAVEA

XSAVEA Save register A to register X

Syntax: XSAVEA

Description: Set register X to the value of register A, and select the next register in sequence as register X.

reg[X] = reg[A], status = longStatus(reg[X]), X = X + 1

Opcode: 0F

Special Cases: • if reg[A] is 32-bit and reg[X] is 64-bit, the upper 32-bits of reg[X] are set to zero
• if reg[A] is 64-bit and reg[X] is 32-bit, only the lower 32-bits of reg[A] are copied
• if reg[X] is 32-bit, it will not increment past register 127
• if reg[X] is 64-bit, it will not increment past register 255

See Also: LOAD, LOADA, LOADX, ALOADX, XSAVE

Instruction Summary

Micromega Corporation 167 uM-FPU64 Instruction Set - Release 411

Appendix A
uM-FPU64 Instruction Summary

Instruction Opcode Arguments Returns Description
NOP
SELECTA
SELECTX
CLR
CLRA
CLRX
CLR0
COPY

COPYA
COPYX
LOAD
LOADA
LOADX
ALOADX
XSAVE
XSAVEA
COPY0
LCOPYI

SWAP

SWAPA
LEFT
RIGHT
FWRITE

FWRITEA
FWRITEX
FWRITE0
FREAD

FREADA
FREADX
FREAD0
ATOF
FTOA
FSET
FADD
FSUB
FSUBR
FMUL
FDIV
FDIVR
FPOW

00
01
02
03
04
05
06
07

08
09
0A
0B
0C
0D
0E
0F
10
11

12

13
14
15
16

17
18
19
1A

1B
1C
1D
1E
1F
20
21
22
23
24
25
26
27

register
register
register

register1,
register2
register
register
register

register

register
signedByte,
register
register1,
register2
register

register,
float32Value
float32Value
float32Value
float32Value
register

string
format
register
register
register
register
register
register
register
register

float32Value

float32Value
float32Value
float32Value

No Operation
Select register A, A = register
Select register X, X = register
reg[register] = 0
reg[A] = 0
reg[X] = 0, X = X + 1
reg[0 | 128] = 0
reg[register2] = reg[register1]

reg[register] = reg[A]
reg[register] = reg[X], X = X + 1
reg[0 | 128] = reg[register]
reg[0 | 128] = reg[A]
reg[0 | 128] = reg[X], X = X + 1
reg[A] = reg[X], X = X + 1
reg[X] = reg[register], X = X + 1
reg[X] = reg[A], X = X + 1
reg[register] = reg[0 | 128]
reg[register] = long(signedByte)

Swap reg[register1] and reg[register2]

Swap reg[register] and reg[A]
Left parenthesis
Right parenthesis
Write 32-bit floating point to reg[register]

Write 32-bit floating point to reg[A]
Write 32-bit floating point to reg[X]
Write 32-bit floating point to reg[0 | 128]
Read 32-bit floating point from
reg[register]
Read 32-bit floating point from reg[A]
Read 32-bit floating point from reg[X]
Read 32-bit floating point from reg[0 | 128]
Convert ASCII to floating point
Convert floating point to ASCII
reg[A] = reg[register]
reg[A] = reg[A] + reg[register]
reg[A] = reg[A] - reg[register]
reg[A] = reg[register] - reg[A]
reg[A] = reg[A] * reg[register]
reg[A] = reg[A] / reg[register]
reg[A] = reg[register] / reg[A]
reg[A] = reg[A] ** reg[register]

Instruction Summary

Micromega Corporation 168 uM-FPU64 Instruction Set - Release 411

FCMP

FSET0
FADD0
FSUB0
FSUBR0
FMUL0
FDIV0
FDIVR0
FPOW0
FCMP0
FSETI
FADDI
FSUBI
FSUBRI
FMULI
FDIVI
FDIVRI
FPOWI
FCMPI

FSTATUS
FSTATUSA
FCMP2

FNEG
FABS
FINV
SQRT
ROOT
LOG
LOG10
EXP
EXP10
SIN
COS
TAN
ASIN
ACOS
ATAN
ATAN2
DEGREES
RADIANS
FMOD
FLOOR
CEIL
ROUND
FMIN
FMAX

FCNV

28

29
2A
2B
2C
2D
2E
2F
30
31
32
33
34
35
36
37
38
39
3A

3B
3C
3D

3E
3F
40
41
42
43
44
45
46
47
48
49
4A
4B
4C
4D
4E
4F
50
51
52
53
54
55

56

register

signedByte
signedByte
signedByte
signedByte
signedByte
signedByte
signedByte
signedByte
signedByte

register

register1,
register2

register

register

register

register
register
conversion

Compare reg[A] and reg[register], and set
status
reg[A] = reg[0 | 128]
reg[A] = reg[A] + reg[0 | 128]
reg[A] = reg[A] - reg[0 | 128]
reg[A] = reg[0] - reg[A]
reg[A] = reg[A] * reg[0 | 128]
reg[A] = reg[A] / reg[0 | 128]
reg[A] = reg[0 | 128] / reg[A]
reg[A] = reg[A] ** reg[0 | 128]
Compare reg[A] and reg[0 | 128]
reg[A] = float(signedByte)
reg[A] = reg[A] - float(signedByte)
reg[A] = reg[A] - float(signedByte)
reg[A] = float(signedByte) - reg[A]
reg[A] = reg[A] * float(signedByte)
reg[A] = reg[A] / float(signedByte)
reg[A] = float(signedByte) / reg[A]
reg[A] = reg[A] ** signedByte
Compare reg[A] and float(signedByte),
and set floating point status
Set floating point status for register
Set floating point status for reg[A]
Compare reg[register1] and reg[register2],
and set floating point status
reg[A] = -reg[A]
reg[A] = | reg[A] |
reg[A] = 1 / reg[A]
reg[A] = sqrt(reg[A])
reg[A] = root(reg[A], reg[register])
reg[A] = log(reg[A])
reg[A] = log10(reg[A])
reg[A] = exp(reg[A])
reg[A] = exp10(reg[A])
reg[A] = sin(reg[A])
reg[A] = cos(reg[A])
reg[A] = tan(reg[A])
reg[A] = asin(reg[A])
reg[A] = acos(reg[A])
reg[A] = atan(reg[A])
reg[A] = atan2(reg[A], reg[register])
reg[A] = degrees(reg[A])
reg[A] = radians(reg[A])
reg[A] = reg[A] MOD reg[register]
reg[A] = floor(reg[A])
reg[A] = ceil(reg[A])
reg[A] = round(reg[A])
reg[A] = min(reg[A], reg[register])
reg[A] = max(reg[A], reg[register])
reg[A] = conversion(reg[A])

Instruction Summary

Micromega Corporation 169 uM-FPU64 Instruction Set - Release 411

FMAC

FMSC

LOADBYTE
LOADUBYTE
LOADWORD
LOADUWORD
LOADE
LOADPI
FCOPYI

FLOAT
FIX
FIXR
FRAC
FSPLIT

SELECTMA

SELECTMB

SELECTMC

LOADMA
LOADMB
LOADMC
SAVEMA
SAVEMB
SAVEMC
MOP
FFT
WRIND

RDIND

DWRITE

DREAD
LBIT
SETIND

ADDIND

COPYIND

LOADIND
SAVEIND

57

58

59
5A
5B
5C
5D
5E
5F

60
61
62
63
64

65

66

67

68
69
6A
6B
6C
6D
6E
6F
70

71

72

73
74
77

78

79

7A
7B

register1,
register2
register1,
register2
signedByte
unsignedByte
signedWord
unsignedWord

signedByte,
register

register,
rows,columns
register,
rows,columns
register,
rows,columns
row,column
row,column
row,column
row,column
row,column
row,column
action
action
dataType,pointer
,count,value1…
valueN
dataType,pointer
,count
register,
value64
register
action, register
type,{register|
address|
function,offset}
register,
unsignedByte
register1,
register2,
register3
register
register

value1…valueN

value64

reg[A] = reg[A] + (reg[register1] *
reg[register2])
reg[A] = reg[A] - (reg[register1] *
reg[register2])
reg[0 | 128] = float(signedByte)
reg[0 | 128] = float(unsignedByte)
reg[0 | 128] = float(signedWord)
reg[0 | 128] = float(unsignedWord)
reg[0 | 128] = 2.7182818
reg[0 | 128] = 3.1415927
reg[register] = float(signedByte)

reg[A] = float(reg[A])
reg[A] = fix(reg[A])
reg[A] = fix(round(reg[A]))
reg[A] = fraction(reg[A])
reg[A] = integer(reg[A]),
reg[0 | 128] = fraction(reg[A])
Select matrix A, starting at register.
size = rows x columns
Select matrix B, starting at register.
size = rows x columns
Select matrix C, starting at register.
size = rows x columns
reg[0] = Matrix A[row, column]
reg[0] = Matrix B[row, column]
reg[0] = Matrix C[row, column]
Matrix A[row, column] = reg[0]
Matrix B[row, column] = reg[0]
Matrix C[row, column] = reg[0]
Matrix/Vector operation
Fast Fourier Transform
Write multiple data values to indirect
pointer

Read multiple data values from indirect
pointer
Write 64-bit value

Read 64-bit value
Bit Clear, Set, Toggle, Test
Set indirect pointer

Add to indirect pointer

Copy using indirect pointers

Load reg[0 | 128] using indirect pointer
Save reg[A] using indirect pointer

Instruction Summary

Micromega Corporation 170 uM-FPU64 Instruction Set - Release 411

INDA
INDX
FCALL
EVENT

RET

BRA
BRA,cc

JMP
JMP,cc

TABLE

FTABLE

LTABLE

POLY

GOTO
RET,cc

LWRITE

LWRITEA
LWRITEX

LWRITE0
LREAD
LREADA
LREADX

LREAD0
LREADBYTE
LREADWORD
ATOL
LTOA
LSET
LADD
LSUB
LMUL
LDIV

7C
7D
7E
7F

80

81
82

83
84

85

86

87

88

89
8A

90

91
92

93
94
95
96

97
98
99
9A
9B
9C
9D
9E
9F
A0

register
register
function
action
{,function}

relativeOffset
conditionCode,
relativeOffset
absoluteOffset
conditionCode,
absoluteOffset
tableSize,
tableItem1...
tableItemN
conditionCode,
tableSize,
tableItem1...
tableItemN
conditionCode,
tableSize,
tableItem1...
tableItemN
count,
float32Value1...
float32ValueN
register
conditionCode

register,
int32Value
int32Value
int32Value

int32Value
register

string
format
register
register
register
register
register

int32Value
int32Value
int32Value

int32Value
byteValue
wordValue

Select register A using reg[register] value
Select register X using reg[register] value
Call user-defined function stored in Flash
Background Events

Return from user-defined function
Unconditional branch
Conditional branch

Unconditional jump
Conditional jump

Table lookup

Floating point reverse table lookup

Long integer reverse table lookup

reg[A] = nth order polynomial

Computed GOTO
Conditional return from user-defined
function
Write 32-bit long integer to reg[register]

Write 32-bit long integer to reg[A]
Write 32-bit long integer to reg[X],
X = X + 1
Write 32-bit long integer to reg[0 | 128]
Read 32-bit long integer from reg[register]
Read 32-bit long value from reg[A]
Read 32-bit long integer from reg[X],
X = X + 1
Read 32-bit long integer from reg[0 | 128]
Read lower 8 bits of reg[A]
Read lower 16 bits reg[A]
Convert ASCII to long integer
Convert long integer to ASCII
reg[A] = reg[register]
reg[A] = reg[A] + reg[register]
reg[A] = reg[A] - reg[register]
reg[A] = reg[A] * reg[register]
reg[A] = reg[A] / reg[register]
reg[0 | 128] = remainder

Instruction Summary

Micromega Corporation 171 uM-FPU64 Instruction Set - Release 411

LCMP

LUDIV

LUCMP

LTST

LSET0
LADD0
LSUB0
LMUL0
LDIV0

LCMP0

LUDIV0

LUCMP0

LTST0

LSETI
LADDI
LSUBI
LMULI
LDIVI

LCMPI

LUDIVI

LUCMPI

LTSTI

LSTATUS
LSTATUSA
LCMP2

LUCMP2

LNEG
LABS
LINC
LDEC
LNOT
LAND
LOR
LXOR
LSHIFT

A1

A2

A3

A4

A5
A6
A7
A8
A9

AA

AB

AC

AD

AE
AF
B0
B1
B2

B3

B4

B5

B6

B7
B8
B9

BA

BB
BC
BD
BE
BF
C0
C1
C2
C3

register

register

register

register

signedByte
signedByte
signedByte
signedByte
signedByte

signedByte

unsignedByte

unsignedByte

unsignedByte

register

register1,
register2
register1,
register2

register
register

register
register
register
register

Signed compare reg[A] and reg[register],
and set status
reg[A] = reg[A] / reg[register]
reg[0 | 128] = remainder
Unsigned compare reg[A] and
reg[register], and set long integer status
Test reg[A] AND reg[register],
 and set long integer status
reg[A] = reg[0]
reg[A] = reg[A] + reg[0 | 128]
reg[A] = reg[A] - reg[0 | 128]
reg[A] = reg[A] * reg[0 | 128]
reg[A] = reg[A] / reg[0 | 128]
reg[0] = remainder
Signed compare reg[A] and reg[0 | 128],
 and set long integer status
reg[A] = reg[A] / reg[0 | 128]
reg[0] = remainder
Unsigned compare reg[A] and reg[0 | 128],
and set long integer status
Test reg[A] AND reg[0 | 128],
and set long integer status
reg[A] = long(signedByte)
reg[A] = reg[A] + long(signedByte)
reg[A] = reg[A] - long(signedByte)
reg[A] = reg[A] * long(signedByte)
reg[A] = reg[A] / long(signedByte)
reg[0 | 128] = remainder
Signed compare reg[A] - long(signedByte),
and set long integer status
reg[A] = reg[A] / long(unsignedByte)
reg[0 | 128] = remainder
Unsigned integer compare reg[A] and
long(unsignedByte), and set status
Test reg[A] AND long(unsignedByte),
and set long integer status
Set long integer status for reg[register]
Set long integer status for reg[A]
Signed integer compare reg[register1],
reg[register2], and set status
Unsigned integer compare reg[register1],
reg[register2], and set status
reg[A] = -reg[A]
reg[A] = absolute value (reg[A])
reg[register] = reg[register] + 1
reg[register] = reg[register] - 1
reg[A] = NOT reg[A]
reg[A] = reg[A] AND reg[register]
reg[A] = reg[A] OR reg[register]
reg[A] = reg[A] XOR reg[register]
reg[A] = reg[A] shift reg[register]

Instruction Summary

Micromega Corporation 172 uM-FPU64 Instruction Set - Release 411

LMIN
LMAX
LONGBYTE
LONGUBYTE
LONGWORD
LONGUWORD
LSHIFTI
LANDI
LORI
SETSTATUS
SEROUT

SERIN
DIGIO
ADCMODE
ADCTRIG
ADCSCALE
ADCLONG
ADCLOAD

ADCWAIT
TIMESET
TIMELONG
TICKLONG
DEVIO

DELAY
RTC
SETARGS
EXTSET
EXTLONG
EXTWAIT
STRSET
STRSEL
STRINS
STRCMP
STRFIND
STRFCHR
STRFIELD
STRTOF
STRTOL
READSEL
STRBYTE
STRINC
STRDEC
SYNC
READSTATUS
READSTR
VERSION
IEEEMODE

C4
C5
C6
C7
C8
C9
CA
CB
CC
CD
CE

CF
D0
D1
D2
D3
D4
D5

D6
D7
D8
D9
DA

DB
DC
DD
E0
E1
E2
E3
E4
E5
E6
E7
E8
E9
EA
EB
EC
ED
EE
EF
F0
F1
F2
F3
F4

register
register
signedByte
unsignedByte
signedWord
unsignedWord
unsignedByte
unsignedByte
unsignedByte
status
action,
{baud}|{string}
action
action,{mode}
mode

channel
channel
channel

device,action
{,…}
period
action

string
start,length
string
string
string
string
field

string

5C
status
string

reg[A] = min(reg[A], reg[register])
reg[A] = max(reg[A], reg[register])
reg[0 | 128] = long(signedByte)
reg[0 | 128] = long(unsignedByte)
reg[0 | 128] = long(signedWord)
reg[0 | 128] = long(unsignedWord)
reg[A] = reg[A] shift unsignedByte
reg[A] = reg[A] AND unsignedByte
reg[A] = reg[A] OR unsignedByte
Set status byte
Serial output

Serial input
Digital I/O
Set A/D trigger mode
A/D manual trigger
ADCscale[ch] = reg[0]
reg[0] = ADCvalue[channel]
reg[0] = float(ADCvalue[channel]) *
ADCscale[channel]
wait for next A/D sample
time = reg[0]
reg[0] = time (long integer)
reg[0] = ticks (long integer)
Device I/O

Delay (in milliseconds)
Real-time Clock
Enable FCALL argument loading
external input count = reg[0]
reg[0] = external input counter
wait for next external input
Copy string to string buffer
Set selection point
Insert string at selection point
Compare string with string selection
Find string
Set field separators
Find field
Convert string selection to floating point
Convert string selection to long integer
Read string selection
Insert byte at selection point
Increment string selection point
Decrement string selection point
Get synchronization byte
Read status byte
Read string from string buffer
Copy version string to string buffer
Set IEEE mode (default)

Instruction Summary

Micromega Corporation 173 uM-FPU64 Instruction Set - Release 411

Notes:
Opcode Opcode value in hexadecimal
Arguments Additional data required by instruction
Returns Data returned by instruction

register register number (0-255).
register1 register number (0-255).
register2 register number (0-255).
function function number (0-63).
byteValue 8-bit integer value.
signedByte 8-bit signed integer value.
unsignedByte 8-bit unsigned integer value.
wordValue 16-bit integer value (MSB first).
signedWord 16-bit signed integer value.
unsignedWord 16-bit unsigned integer value.
int32Value 32-bit integer value (MSB first).
float32Value 32-bit floating point value (MSB first).
status Status byte.
string Zero-terminated string.
baud Baud rate and debug mode.
conditionCode Condition code.
absoluteOffset User-defined function offset (absolute offset).
relativeOffset User-defined function offset (-128 to +127 from current offset).
channel A/D channel number.
count Byte count.
tableSize Number of table items
tableItem1...tableItemN Table values.
start String of string selection.
length Length of string selection.
item Internal value to read.
conversion Selects the conversion to perform.
xop_number XOP instruction number
arg1, arg2, arg3 XOP argument bytes

PICMODE
CHECKSUM
BREAK
TRACEOFF
TRACEON
TRACESTR
TRACEREG
READVAR
SETREAD
XOP

RESET

F5
F6
F7
F8
F9
FA
FB
FC
FD
FE

FF

string
register
item

xop_number,byte,
byte, byte

Set PIC mode
Calculate checksum for uM-FPU code
Debug breakpoint
Turn debug trace off
Turn debug trace on
Send string to debug trace buffer
Send register value to trace buffer
Read internal register value
Set read mode
Executes extended opcode instruction
stored in Flash memory
Reset (9 consecutive FF bytes cause a
reset, otherwise it is a NOP)

Revision History

Micromega Corporation 174 uM-FPU64 Instruction Set - Release 411

Appendix B
Revision History

Release 409, 411
Modified Instructions
DEVIO
DEVIO, FIFOn
DEVIO, MEM

DEVIO, SDFAT
FTABLE
LTABLE

RDIND
TABLE
TRACESTR

WRIND

New Instructions
DEVIO, loadable
devices

Deleted Instructions
DEVIO, VDRIVE2

Release 408
Modified Instructions
FTOA
READVAR

SELECTMA
SELECTMB

SELECTMC
XOP

Release 407, 406
Modified Instructions
DEVIO,LCD
DEVIO,SPI

TABLE

Release 405
Modified Instructions
DEVIO,FIFOn
DEVIO,I2C

DEVIO,LCD
DIGIO

RTC
TICKLONG

TIMESET

Release 404
Modified Instructions
MOP

Release 402
Modified Instructions
ADDIND COPYIND DELAY DEVIO,COUNTER

Revision History

Micromega Corporation 175 uM-FPU64 Instruction Set - Release 411

EVENT
FCALL
FFT
FTOA
LEFT
LOADIND
LOADMA

LOADMB
LOADMC
MOP
READVAR
RET
RET,CC
RTC

SAVEIND
SAVEMA
SAVEMB
SAVEMC
SELECTA
SELECTMA
SELECTMB

SELECTMC
SERIN
SEROUT
SETARGS
SETIND

Release 401
New Instructions
ADDIND
COPYIND
DELAY
DEVIO
DIGIO

DREAD
DWRITE
EVENT
FCOPYI
LANDI

LBIT
LCOPYI
LORI
LSHIFTI
RDIND

RTC
SETARGS
SETIND
SETREAD
WRIND

Modified Instructions
ADCLOAD
ADCLONG
ADCMODE

ADCSCALE
LOADIND
READVAR

SAVEIND
SERIN
SEROUT

	Introduction
	uM-FPU Registers
	Register A
	Register X
	Register 0 and Register 128
	Register Abbreviations

	Floating Point Instructions
	Basic Floating Point Instructions
	Loading Floating Point Values
	Reading Floating Point Values
	Additional Floating Point Instructions
	Matrix Instructions
	Fast Fourier Transform Instruction
	Conversion Instructions

	Long Integer Instructions
	Basic Long Integer Instructions
	Loading Long Integer Values
	Reading Long Integer Values
	Additional Long Integer Instructions

	Special Purpose Instructions
	Indirect Pointer Instructions
	Stored Function Instructions
	Background Event Processing
	Analog to Digital Conversion Instructions
	Digital I/O Instructions
	Timer Instructions
	External Input Instructions
	String Manipulation Instructions
	Serial Input/Output
	Debugging Instructions

	Test Conditions
	uM-FPU64 Instruction Reference
	[__41a261b3-0.pdf]
	ACOS	Arc Cosine
	[__41a261b3-0-1.pdf]
	ADCLOAD	Load scaled analog value	
	[__41a261b3-3-1.pdf]
	ADCLONG	Load raw analog value	
	[__41a261b3-0-2.pdf]
	ADCMODE	Set ADC trigger mode	
	[__41a261b3-3-0.pdf]
	ADCSCALE	Set scale multiplier for ADC	
	[__41a261b3-1.pdf]
	ADCTRIG	Trigger an A/D conversion
	[__41a261b3-0-3.pdf]
	ADCWAIT	Wait for next A/D sample
	[__41a261b3-3-2.pdf]
	ADDIND	Add to Indirect Pointer	
	[__41a261b3-13-5.pdf]
	ALOADX	Load register A from register X
	[__41a261b3-1-1.pdf]
	ASIN	Arc Sine
	[__41a261b3-1-2.pdf]
	ATAN	Arc Tangent
	[__41a261b3-2.pdf]
	ATAN2	Arc Tangent (with two registers)
	[__41a261b3-3.pdf]
	ATOF	Convert ASCII string to floating point
	[__41a261b3-4.pdf]
	ATOL	Convert ASCII string to long integer
	[__41a261b3-5.pdf]
	BRA	Unconditional branch
	BRA, cc	Conditional branch
	[__41a261b3-3-1-0.pdf]
	BREAK	Debug breakpoint
	[__41a261b3-6.pdf]
	CEIL	Ceiling
	[__41a261b3-7.pdf] CHECKSUM		Calculate checksum for uM-FPU code
	[__41a261b3-8.pdf]
	CLR	Clear register
	[__41a261b3-9.pdf]
	CLR0	Clear register 0
	[__41a261b3-9-1.pdf]
	CLRA	Clear register A
	[__41a261b3-9-2.pdf]
	CLRX	Clear register X
	[__41a261b3-9-3.pdf]
	COPY	Copy registers
	[__41a261b3-9-4.pdf]
	COPYA	Copy register A
	[__41a261b3-0-0.pdf]
	COPYIND	Copy using Indirect Pointers	
	[__41a261b3-0-0.pdf]
	COPYX	Copy register X
	[__41a261b3-0-0-1.pdf]
	COPY0	Copy register 0
	[__41a261b3-0-0-0.pdf]
	COS	Cosine
	[__41a261b3-9-5.pdf]
	DEGREES	Convert radians to degrees
	[__41a261b3-10.pdf]
	DELAY	Delay (in milliseconds)		
	[__41a261b3-10.pdf]
	DEVIO	Device Input/Output	
		
	Opcode:	DA
	[__41a261b3-10.pdf]
	DEVIO, ASYNC	Asynchronous Serial Port Interface		
	Opcode:	DA
	Byte 3:	action	
	[__41a261b3-10.pdf]
	DEVIO, COUNTER	32-bit Counter Interface	
		
	Opcode:	DA
	Byte 2:	COUNTER+n (0x50-0x53)
	Byte 3:	action
	[__41a261b3-10.pdf]
	DEVIO, FIFO		FIFO Buffer Interface		
	Opcode:	DA
	Byte 2:	FIFO1-FIFO3 (0x01-0x04)
	Byte 3:	action
		Clear Buffer (03)
	[__41a261b3-10.pdf]
	DEVIO, I2C		I2C Bus Interface	
		
	Opcode:	DA
	Byte 2:	I2C (0x20)
	Byte 3:	action
	DEVIO, LCD		LCD Interface		
	Opcode:	DA
	Byte 2:	LCD (0x80)
	[__41a261b3-10.pdf]
	DEVIO, MEM	Memory Interface	
		
	Opcode:	DA
	Byte 2:	MEM (0x00)
	Byte 3:	action
		[image.pdf]
	[__41a261b3-10.pdf]
	DEVIO, OWIRE	1-Wire Bus Interface	
		
	Opcode:	DA
	Byte 2:	OWIRE (0x10-0x1F)
	Byte 3:	action
	Byte 4:	regAddr
	Byte 4:	regAddr
	Byte 4:	count
	Byte 5:	regAddr
	Byte 4:	count
	Byte 5:	regAddr
	Byte 4:	count
	Byte 5:	regAddr
	Byte 4:	count
	Byte 5:	regAddr
	[__41a261b3-10.pdf]
	DEVIO, SDFAT	SD card with FAT16 and FAT32 support		
	Opcode:	DA
	Byte 2:	SDFAT (0xA0)
	[__41a261b3-10.pdf]
	DEVIO, SERVO	Servo Control Interface		
	Opcode:	DA
	Byte 2:	device (0x60-63)
	Byte 3:	action
	Byte 4:	register
	Byte 4:	register
	Byte 4:	register
	[__41a261b3-10.pdf]
	DEVIO, SPI		SPI Interface	
		
	Opcode:	DA
	Byte 2:	device (0x30-0x3F)
	Byte 3:	action
	[__41a261b3-10.pdf]
	DIGIO	Digital Input/Output
		
	[__41a261b3-28.pdf]
	DREAD	Read 64-bit value
		
	[__41a261b3-28.pdf]
	DWRITE	Write 64-bit value	
	[__41a261b3-1-3.pdf]
	EVENT	Background events	
	[__41a261b3-28.pdf]
	EXP	The value e raised to a power
	[__41a261b3-11.pdf]
	EXP10	The value 10 raised to a power
	[__41a261b3-12.pdf]
	EXTLONG	Load value of external input counter
	[__41a261b3-2-1.pdf]
	EXTSET	Set value of external input counter
	[__41a261b3-1-3.pdf]
	EXTWAIT	Wait for next external input pulse
	[__41a261b3-3-1-3.pdf]
	FABS	Floating point absolute value
	[__41a261b3.pdf]
	FADD	Floating point add
	[__41a261b3-13.pdf]
	FADDI	Floating point add immediate value
	[__41a261b3-13-2.pdf]
	FADD0	Floating point add register 0
	[__41a261b3-13-1.pdf]
	FCALL	Call Flash memory user defined function
	[__41a261b3-3-1-4.pdf]
	FCMP	Floating point compare
	[__41a261b3-14.pdf]
	FCMPI	Floating point compare immediate value
	[__41a261b3-14-3.pdf]
	FCMP0	Floating point compare register 0
	[__41a261b3-14-1.pdf]
	FCMP2	Floating point compare
	[__41a261b3-14-2.pdf]
	FCNV	Floating point conversion
	[__41a261b3-14-4.pdf]
	FCOPYI	Copy Immediate value	
	[__41a261b3-0-0-2.pdf]
	FDIV	Floating point divide
	[__41a261b3-13-3.pdf]
	FDIVI	Floating point divide by immediate value
	[__41a261b3-13-1-1.pdf]
	FDIV0	Floating point divide by register 0
	[__41a261b3-13-0.pdf]
	FDIVR	Floating point divide (reversed)
	[__41a261b3-13-4.pdf]
	FDIVRI	Floating point divide by immediate value (reversed)
	[__41a261b3-13-1-2.pdf]
	FDIVR0	Floating point divide register 0 (reversed)
	[__41a261b3-13-0-1.pdf]
	FFT	Fast Fourier Transform
	[__41a261b3-14-0.pdf]
	FINV	Floating point inverse
	[__41a261b3-38.pdf]
	FIX	Convert floating point to long integer
	[__41a261b3-16.pdf]
	FIXR	Convert floating point to long integer with rounding
	[__41a261b3-16-1.pdf]
	FLOAT	Convert long integer to floating point
	[__41a261b3-17.pdf]
	FLOOR	Floor
	[__41a261b3-18.pdf]
	FMAC	Multiply and add
	[__41a261b3-13-5.pdf]
	FMAX	Floating point maximum
	[__41a261b3-79.pdf]
	FMIN	Floating point minimum
	[__41a261b3-80.pdf]
	FMOD	Floating point remainder
	[__41a261b3-3-3.pdf]
	FMSC	Multiply and subtract from
	[__41a261b3-13-6.pdf]
	FMUL	Floating point multiply
	[__41a261b3-13-7.pdf]
	FMULI	Floating point multiply by immediate value
	[__41a261b3-13-0-2.pdf]
	FMUL0	Floating point multiply by register 0
	[__41a261b3-13-8.pdf]
	FNEG	Floating point negate
	[__41a261b3-81.pdf]
	FPOW	Floating point power
	[__41a261b3-85.pdf]
	FPOWI	Floating point power by immediate value
	[__41a261b3-13-0-3.pdf]
	FPOW0	Floating point power by register 0
	[__41a261b3-13-9.pdf]
	FRAC	Get fractional part of floating point value
	[__41a261b3-20.pdf]
	FREAD	Read floating point value
	[__41a261b3-21.pdf]
	FREADA	Read floating point value from register A
	[__41a261b3-21-2.pdf]
	FREADX	Read floating point value from register X
	[__41a261b3-21-3.pdf]
	FREAD0	Read floating point value from register 0
	[__41a261b3-21-1.pdf]
	FSET	Set register A
	[__41a261b3-1-4.pdf]
	FSETI	Set register from immediate value
	FSET0	Set register A from register 0
	[__41a261b3-1-4.pdf]
	FSPLIT	Split integer and fractional portions of floating point value
	[__41a261b3-3-4.pdf]
	FSTATUS	Get floating point status
	FSTATUSA	Get floating point status of register A
	[__41a261b3-23-1.pdf]
	FSUB	Floating point subtract
	[__41a261b3-13-10.pdf]
	FSUBI	Floating point subtract immediate value
	[__41a261b3-13-0-4.pdf]
	FSUB0	Floating point subtract register 0
	[__41a261b3-13-11.pdf]
	FSUBR	Floating point subtract (reversed)
	[__41a261b3-13-12.pdf]
	FSUBRI	Floating point subtract immediate value (reversed)
	[__41a261b3-13-0-5.pdf]
	FSUBR0	Floating point subtract register 0 (reversed)
	[__41a261b3-13-13.pdf]
	FTABLE	Floating point reverse table lookup
	[__41a261b3-3-1-5.pdf]
	FTOA	Convert floating point value to ASCII string
	[__41a261b3-27.pdf]
	FWRITE	Write floating point value
	[__41a261b3-27-1.pdf]
	FWRITEA	Write floating point value to register A
	[__41a261b3-27-3.pdf]
	FWRITEX	Write floating point value to register X
	FWRITE0	Write floating point value to register 0
	[__41a261b3-27-2.pdf]
	GOTO	Computed GOTO
	[__41a261b3-3-1-0-1.pdf]
	IEEEMODE	Select IEEE floating point format
	[__41a261b3-27-5.pdf]
	INDA	Select A using value in register
	[__41a261b3-15.pdf]
	INDX	Select X using value in register
	[__41a261b3-19.pdf]
	JMP	Unconditional jump
	[__41a261b3-3-1-6.pdf]
	JMP, cc	Conditional jump
	[__41a261b3-3-1-0-0.pdf]
	LABS	Long Integer absolute value
	[__41a261b3-39.pdf]
	LADD	Long integer add
	[__41a261b3-40.pdf]
	LADDI	Long integer add immediate value
	[__41a261b3-13-1-3.pdf]
	LADD0	Long integer add register 0
	[__41a261b3-13-0-6.pdf]
	LAND	Long integer AND
	[__41a261b3-41.pdf]
	LANDI	Long integer AND immediate value	
	[__41a261b3-41.pdf]
	LBIT	Long integer Bit Clear, Set, Toggle, Test	
	[__41a261b3-41.pdf]
	LCMP	Long integer compare
	[__41a261b3-14-5.pdf]
	LCMPI	Long integer compare immediate value
	[__41a261b3-14-1-1.pdf]
	LCMP0	Long integer compare register 0
	[__41a261b3-14-0-1.pdf]
	LCMP2	Long integer compare
	[__41a261b3-14-6.pdf]
	LCOPYI	Copy Immediate value	
	[__41a261b3-0-0-2.pdf]
	LDEC	Long integer decrement
	[__41a261b3-43.pdf]
	LDIV	Long integer divide
	[__41a261b3-40-1.pdf]
	LDIVI	Long integer divide by immediate value
	LDIV0	Long integer divide by register 0
	[__41a261b3-13-0-7.pdf]
	LEFT	Left Parenthesis	
	[__41a261b3-46.pdf]
	LINC	Long integer increment
	[__41a261b3-43-1.pdf]
	LMAX	Long integer maximum
	[__41a261b3-79-1.pdf]
	LMIN	Long integer minimum
	[__41a261b3-80-1.pdf]
	LMUL	Long integer multiply
	[__41a261b3-40-2.pdf]
	LMULI	Long integer multiply by immediate value
	[__41a261b3-13-1-5.pdf]
	LMUL0	Long integer multiply by register 0
	[__41a261b3-13-0-8.pdf]
	LNEG	Long integer negate
	[__41a261b3-50.pdf]
	LNOT	A = NOT A
	[__41a261b3-51.pdf]
	LOAD	Load register 0 with value of register
	[__41a261b3-51-1.pdf]
	LOADA	Load register 0 with the value of register A
	[__41a261b3-51-2.pdf]
	LOADBYTE		Load register 0 with 8-bit signed value
	[__41a261b3-53.pdf]
	LOADE	Load register 0 with floating point value of e
	[__41a261b3-53-1.pdf]
	LOADIND	Load Indirect	
	[__41a261b3-53-2.pdf]
	LOADMA	Load register 0 with the value from matrix A
	[__41a261b3-53-3.pdf]
	LOADMB	Load register 0 with the value from matrix A
	[__41a261b3-53-4.pdf]
	LOADMC	Load register 0 with the value from matrix A
	[__41a261b3-53-5.pdf]
	LOADPI	Load register 0 with value of Pi
	[__41a261b3-55.pdf]
	LOADUBYTE	Load register 0 with 8-bit unsigned value
	[__41a261b3-56.pdf]
	LOADUWORD	Load register 0 with 16-bit unsigned value
	[__41a261b3-57.pdf]
	LOADWORD		Load register 0 with 16-bit signed value
	[__41a261b3-58.pdf]
	LOADX	Load register 0 with the value of register X
	[__41a261b3-58-1.pdf]
	LOG	Logarithm (base e)
	[__41a261b3-60.pdf]
	LOG10	Logarithm (base 10)
	[__41a261b3-61.pdf]
	LONGBYTE	Load register 0 with 8-bit signed value
	[__41a261b3-62.pdf]
	LONGUBYTE	Load register 0 with 8-bit unsigned value
	[__41a261b3-63.pdf]
	LONGUWORD	Load register 0 with 16-bit unsigned value
	[__41a261b3-64.pdf]
	LONGWORD	Load register 0 with 16-bit signed value
	[__41a261b3-65.pdf]
	LOR	Long integer OR
	[__41a261b3-41-1.pdf]
	LORI	Long integer OR immediate value	
	[__41a261b3-41-1.pdf]
	LREAD	Read long integer value
	[__41a261b3-21-4.pdf]
	LREADA	Read long integer value from register A
	[__41a261b3-21-0-1.pdf]
	LREADBYTE	Read the lower 8-bits of register A
	[__41a261b3-87.pdf]
	LREADWORD	Read the lower 16-bits of register A
	[__41a261b3-91.pdf]
	LREADX	Read long integer value from register X
	[__41a261b3-21-1-1.pdf]
	LREAD0	Read long integer value from register 0
	[__41a261b3-21-0.pdf]
	LSET	Set register A
	[__41a261b3-1-6.pdf]
	LSETI	Set register from immediate value
	[__41a261b3-22-1.pdf]
	LSET0	Set register A from register 0
	[__41a261b3-1-7.pdf]
	LSHIFT	Long integer shift
	[__41a261b3-69.pdf]
	LSHIFTI	Long integer shift using immediate value	
	[__41a261b3-69.pdf]
	LSTATUS	Get long integer status
	[__41a261b3-23-2.pdf]
	LSTATUSA	Get long integer status of register A
	[__41a261b3-23-0.pdf]
	LSUB	Long integer subtract
	[__41a261b3-40-3.pdf]
	LSUBI	Long integer subtract immediate value
	[__41a261b3-13-1-6.pdf]
	LSUB0	Long integer subtract register 0
	[__41a261b3-13-0-9.pdf]
	LTABLE	Long integer reverse table lookup
	[__41a261b3-3-1-7.pdf]
	LTOA	Convert long integer value to ASCII string and store in string buffer
	LTST	Long integer bit test
	[__41a261b3-14-1-2.pdf]
	LTSTI	Long integer bit test using immediate value
	[__41a261b3-14-1-2.pdf]
	LTST0	Long integer bit test register 0
	[__41a261b3-14-0-2.pdf]
	LUCMP	Unsigned long integer compare
	[__41a261b3-14-8.pdf]
	LUCMPI	Unsigned long integer compare immediate value
	[__41a261b3-14-1-3.pdf]
	LUCMP0	Unsigned long integer compare register 0
	[__41a261b3-14-0-3.pdf]
	LUCMP2	Unsigned long integer compare
	[__41a2aee0-10.pdf]	
	[__41a261b3-14-9.pdf]
	LUDIV	Unsigned long integer divide
	[__41a261b3-40-4.pdf]
	LUDIVI	Unsigned long integer divide by immediate value
	[__41a261b3-13-1-7.pdf]
	LUDIV0	Unsigned long integer divide by register 0
	[__41a261b3-13-0-10.pdf]
	LWRITE	Write long integer value
	[__41a261b3-28.pdf]
	LWRITEA	Write long integer value to register A
	[__41a261b3-27-7.pdf]
	LWRITEX	Write long integer value to register X
	[__41a261b3-27-0.pdf]
	LWRITE0	Write long integer value to register0
	[__41a261b3-27-6.pdf]
	LXOR	Long integer XOR
	[__41a261b3-41-2.pdf]
	MOP	Matrix Operation
	[__41a261b3-82.pdf]
	NOP	No operation
	[__41a261b3-82-1.pdf]
	PICMODE	Select PIC floating point format
	[__41a261b3-83.pdf]
	POLY	A = nth order polynomial
	[__41a261b3-84.pdf]
	RADIANS	Convert degrees to radians
	[__41a261b3-14-0-4.pdf]
	RDIND	Read data using indirect pointer	
	[__41a261b3-3-7.pdf]
	READSEL	Read string selection
	[__41a261b3-90.pdf]
	READSTATUS	Return the last status byte
	[__41a261b3-3-5.pdf]
	READSTR	Read string
	[__41a261b3-90-1.pdf]
	READVAR	Read internal variable	
	[__41a261b3-90-2.pdf]
	RESET	Reset
	[__41a261b3-82-2.pdf]
	RET	Return from user-defined function
	[__41a261b3-3-1-8.pdf]
	RET, cc	Conditional return from user-defined function
	[__41a261b3-104.pdf]
	RIGHT	Right Parenthesis
	[__41a261b3-92.pdf]
	ROOT	Calculate nth root
	[__41a261b3-93.pdf]
	ROUND	Floating point Rounding
	[__41a261b3-1-3.pdf]
	RTC	Real-time Clock	
	[__41a261b3-28.pdf]
	SAVEIND	Save using Indirect Pointer	
	[__41a261b3-94-1.pdf]
	SAVEMA	Save register 0 value to matrix A
	[__41a261b3-94-2.pdf]
	SAVEMB	Save register 0 value to matrix B
	[__41a261b3-94-3.pdf]
	SAVEMC	Save register 0 value to matrix C
	[__41a261b3-94-4.pdf]
	SELECTA	Select A
	SELECTMA	Select matrix A
	[__41a261b3-3-6.pdf]
	SELECTMB	Select matrix B
	[__41a261b3-3-0-3.pdf]
	SELECTMC	Select matrix C
	[__41a261b3-3-1-9.pdf]
	SELECTX	Select register X
	[__41a261b3-3-7.pdf]
	SERIN	Serial input		
	Opcode:	CF
	[__41a261b3-98-0.pdf]
	SEROUT	Serial Output		
	Opcode:	CE
	[__41a261b3-6.pdf]
	SETARGS	Enable FCALL argument loading	
	SETIND	Set indirect pointer	
	[__41a261b3-3-7.pdf]
	SETREAD	Set Read Mode	
	SETSTATUS		Set status byte
	SIN	Sine
	[__41a261b3-97.pdf]
	SQRT	Square root
	[__41a261b3-98.pdf]
	STRBYTE	Insert byte at string selection
	[__41a261b3-104-0-1.pdf]
	STRCMP	Compare string with string selection
	[__41a261b3-3-1-4-1.pdf]
	STRDEC	Decrement string selection point
	[__41a261b3-104-0-2.pdf]
	STRFCHR	Set field separator characters
	[__41a261b3-3-1-4-2.pdf]
	STRFIELD	Find field in string
	[__41a261b3-3-1-5-1.pdf]
	STRFIND	Find string in the string buffer
	[__41a261b3-3-1-3-1.pdf]
	STRINC	Increment string selection point
	[__41a261b3-104-0-3.pdf]
	STRINS	Insert string
	[__41a261b3-3-1-0-2.pdf]
	STRSEL	Set string selection point
	[__41a261b3-3-1-1-1.pdf]
	STRSET	Copy string to string buffer
	[__41a261b3-3-1-10.pdf]
	STRTOF	Convert string selection to floating point
	[__41a261b3-3-1-1-2.pdf]
	STRTOL	Convert string selection to long integer
	[__41a261b3-3-1-1-3.pdf]
	SWAP	Swap registers
	[__41a261b3-9-6.pdf]
	SWAPA	Swap register A
	[__41a261b3-9-7.pdf]
	SYNC	Synchronization
	[__41a261b3-99.pdf]
	TABLE	Table lookup
	[__41a261b3-100.pdf]
	TAN	Tangent
	[__41a261b3-101.pdf]
	TICKLONG	Load register 0 with millisecond or microsecond ticks
	[__41a261b3-0-4.pdf]
	TIMELONG	Load register 0 with time value in seconds
	[__41a261b3-3-0-4.pdf]
	TIMESET	Set time value in seconds
	[__41a261b3-3-0-0-2.pdf]
	TRACEOFF	Turn debug trace off
	[__41a261b3-102.pdf]
	TRACEON	Turn debug trace on
	[__41a261b3-103.pdf]
	TRACEREG	Display register value in debug trace
	[__41a261b3-104-1.pdf]
	TRACESTR	Display debug trace message
	[__41a261b3-104-2.pdf]
	VERSION	Copy the version string to the string buffer
	WRIND	Write data using indirect pointer	
	[__41a261b3-3-7.pdf]
	XOP	Execute extended opcode instruction stored in Flash memory
	[__41a261b3-3-7.pdf]
	XSAVE	Save register value to register X
	[__41a261b3-1-8.pdf]
	XSAVEA	Save register A to register X
	[__41a261b3-1-1-1.pdf]

	Appendix A
	Appendix B
	New Instructions

